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The Role of Intuition and Formal Thinking 
in Kant, Riemann, Husserl, Poincare, Weyl, 
and in Current Mathematics and Physics

“Mathematics is a very human exploration of the patterns of the world, one which 
thrives on play and surprise and beauty”. 

(Hermann Weyl, 1949) 

“Many people have an impression that mathematics is an austere and formal subject 
concerned with complicated and ultimately confusing rules for the manipulation 
of numbers, symbols and equations, rather like the preparation of a complicated 
income tax return. Good mathematics is quite opposite to this. Mathematics is an art 
of human understanding… […] A given mathematical concept might be primarily a 
symbolic equation, a picture, a rhythmic pattern, a short movie — or best of all, an 
integrated combination of several different representations”. 

(William Thurston, 2009)
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Abstract. According to Kant, the axioms of intuition, i.e. space and time, must pro-
vide an organization of the sensory experience. However, this first orderliness of 
empirical sensations seems to depend on a kind of faculty pertaining to subjecti-
vity, rather than to the encounter of these same intuitions with the real properties 
of phenomena. Starting from an analysis of some very significant developments in 
mathematical and theoretical physics in the last decades, in which intuition played 
an important role, we argue that nevertheless intuition comes into play in a fun-
damentally different way to that which Kant had foreseen: in the form of a formal 
or “categorical” yet not sensible intuition. We show further that the statement that 
our space is mathematically three-dimensional and locally Euclidean by no means 
follows from a supposed a priori nature of the sensible or subjective space as Kant 
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claimed. In fact, the three-dimensional space can bear many different geometrical 
and topological structures, as particularly the mathematical results of Milnor, Smale, 
Thurston and Donaldson demonstrated. On the other hand, it has been stressed that 
even the phenomenological or perceptual space, and especially the visual system, 
carries a very rich geometrical organization whose structure is essentially non-Eu-
clidean. Finally, we argue that in order to grasp the meaning of abstract geometric 
objects, as n-dimensional spaces, connections on a manifold, fiber spaces, module 
spaces, knotted spaces and so forth, where sensible intuition is essentially lacking 
and where therefore another type of mathematical idealization intervenes, we need 
to develop a new form of intuition.

Keywords. Intuition, imagination, formalism, axiomatization, space, knot, dimen-
sion, non-Euclidean geometries, Kant, Riemann, Husserl, Poincaré, Weyl. 

1. Comments on the Role of Intuition according to Kant

Kantian philosophy is generally associated with his theory that intuition 
is, although not exclusively, at the foundation of knowledge. Now, it is 
true that philosophical thought reached a turning point with Kant in the 
sense that he showed that intuition could not be developed from one 
source alone: as was the case with Descartes, who opposed reason and 
sensibility, or as has been the case with Hume and the English empiricists 
who limited themselves to the experiences of the senses.

Kant rejected this alternative as irrelevant and in so doing, opened up 
a new horizon for philosophical research. He helped to show the complex 
and “dynamical” character of knowledge, as well as the fact that intuition 
plays an essential role in settling knowledge. The reasons for this are 
two-fold. Firstly, there are the pure forms of sensibility (or intuition) of 
space and time, whose function is to order and to yield meaningful the 
empirical phenomena (the flow of sensations) from which a preliminary 
legalization may be established, in accordance with what Kant called the 
axioms of intuition. 

One such axiom which Kant presented as being a self-evident (and 
this, as we will later see, is where the problem lies), asserts that our 
sensible (or perceptual) space – or in other words, our Euclidean sur-
rounding space and not the abstract mathematical object itself R3 – must 
have three dimensions. The fact that we recognize that our space has 
three dimensions and not more (recall that according to general relativity 
space-time has four dimensions, and that according to recent physical 
theories such as supergravity and string theory space-time might have 
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ten dimensions) means, in Kant’s mind, that we must adopt such a pos-
tulate in order to begin to make sense of the multitude of incoherent, 
empirical perceptions and external phenomena. This is the first func-
tion which Kant attributes to the intuitions of space (for the external 
sensibility) and time (for inner sensibility): provide a rational and struc-
tural coherence to the multitude of empirical phenomena, a coherence 
which would, nevertheless, at this point, seem to be less dependent on 
the internal structure of the real phenomena than on a kind of faculty 
inherent to subjectivity. In other words, intuition, in this sense, acts as 
a system of reference, or as a sort of ordering criterion. 

The mathematician Bernhard Riemann expressed this Kantian idea in 
somewhat different, yet more precise terms:

“The hypothesis that space is an infinite and three-dimen-
sional manifold is a hypothesis which applies to our whole 
perception of the external world, and which allows us, at 
every instant, to complete the realm of our actual percep-
tions and construct the possible places of objects; in fact, 
this hypothesis is constantly confirmed in all of these ap-
plications. (...) But the infinitude of space is by no means a 
necessary consequence of what precedes (Riemann 1990)”. 

This passage from Riemann demands further comments, since here 
a new element emerges which is very important when considered in rela-
tion to the Kantian position, and which belongs to a question which is still 
debated today: this concerns the status of intuition in mathematics and 
physics, and first of all the intuition of space. The very development of 
these two branches of science, as well as a number of important results 
obtained throughout the 19th and 20th centuries, have showed that intu-
ition plays a fundamental role in the elaboration of theoretical concepts 
and in the search for the interaction of the latter with a possible objec-
tive knowledge of phenomena. However, this has required a substantial 
rethinking of our concept of intuition and the role that it can play in our 
theoretical and real knowledge of the world.
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With reference to this, we can characterize a certain number of theories 
of knowledge in relation to the status that they each attribute to intuition. 
Here, I shall restrict myself to consider especially the Kantian conception.

(i) Kant and Kantianism have ascribed to intuition a central role in 
the entire system of knowledge. In fact, according to Kant, true knowl-
edge cannot exist without intuition, because we can only make sense of 
external phenomena if they are related to a pure form of intuition which 
is established a priori – namely the intuition of space and time. More 
specifically, Kant characterizes the mathematical and theoretic-physical 
knowledge by the two following properties (or axioms): (1) Mathemat-
ical knowledge is founded on intuition and not on concepts, (2) Math-
ematical knowledge is synthetic and a priori as opposed to analytical 
in nature. 

We would try now to analyze the meaning of these two Kantian axi-
oms, in order to emphasize the points of interest as well as their lim-
its. Firstly we notice that Kant includes geometry as well as arithmetic 
in the realm of mathematics, giving them essentially the same status, 
a position which poses some serious problems. Let’s consider just one 
example. We know that the Riemann’s zeta function1 can be written as 
a purely formal (arithmetical) expression. In this sense, its definition 
does not require intuitive reasoning whatever, but a purely mathemat-
ical reasoning involving the introduction of a certain number of formal 
properties which must, first of all, be exactly defined and then rigorously 

1  The Riemann hypothesis is a famous deep mathematical conjecture first stated by 
Riemann first in the groundbreaking 1859 paper “Über die Anzhal der Primzhalen unter 
eine gegebenen Grösse”, where the great mathematician obtained an analytical formula 
for the number of primes up to a preassigned limit. The formula is expressed in terms of 
the zeros of the zeta function, namely the solutions p ∈ C of the equation V(p) = 0. In its 
very clear account, Bombieri wrote [2000, p. 1], «The Riemann zeta function is the func-
tion of the complex variable s, defined in the half-plane R(s) > 1 by absolutely convergent 
series

𝜍𝜍(𝑠𝑠): = ∑ 1/𝑛𝑛𝑠𝑠
∞

𝑛𝑛=1
 ,

and in the whole complex plane C by analytic continuation. As shown by Riemann, V(s) 
extends to C as a meromorphic function with only a simple pole at s = 1, with residue 1, 
and satisfies the functional equation 

𝜋𝜋−𝑠𝑠/2Γ(𝑠𝑠/2)𝜍𝜍(𝑠𝑠) = 𝜋𝜋−(1−𝑠𝑠)/2Γ(1 − 𝑠𝑠/2)𝜍𝜍(1 − 𝑠𝑠) .
The statement that all zeros of the function V(s) are real is the Riemann hypothesis”. 
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proved. From that point of view, it would be worthless try to assign any 
kind of intuitive content to these formal properties. It is much more in 
the abstract ideas, the formal generative techniques and the reasoning 
based on the symbolic mathematical structures, which we need to look 
for the source of arithmetic thought. 

This does not, however, mean that intuition plays no role at all; for 
intuition comes into play in a fundamentally different way to that which 
Kant had foreseen: more precisely, in the form of an intellectual (or “cat-
egorial” in Husserl’s terms) and not sensual intuition, this being an active 
and creative intuition, as opposed to a passive and receptive intuition. In 
mathematics and theoretical physics, the intuition is often related with 
the introduction of a profound idea which reveal a new link among dif-
ferent fields of mathematics or of a deep conjecture, which open a new 
landscape in a given field of research.

2. Some Remarks About the Role of Intuition and Conceptualization 
in Modern Mathematics and Physics

The previous remarks should help to understand better why certain 
arithmetical invariants recently discovered in the framework of research, 
in algebraic geometry, on the four-dimensional and compact manifolds 
or in knot theory, are directly linked notably with the geometric and 
topological structure of these same mathematical objects; or in other 
words, how algebraic and topological invariants such as the Alexander 
or Donaldson invariants, hold an enormous amount of information on 
both the local (differential) and global (topological) behavior of a large 
class of mathematical objects which have, until now, been considered 
separately. Let us now consider in more detail these two examples, for 
which it is very important to underline the following facts. 

2.1 Some Mathematical and Physical Developments

(i) The Alexander polynomial of a knot or a link, which has become 
one of the cornerstones of knot theory, is very closely connected with 
the topological properties of the knot. Also of great significance is that 
there are various methods by which we may calculate the Alexander 
polynomial; one of these methods is called the Seifert matrix. Concisely, 
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“the Seifert matrix of a knot is a very combinatorial to-
pological and very nice tool allowing to show how various 
surfaces can be constructed from the same knot diagram: 
it suffice that the linking numbers for all these surfaces 
be equal or rearranged in such a way that they turn out to 
be equivalent. He described a method for associating with 
each knot a polynomial such that if one form of a knot can 
be topologically transformed into another form, both will 
have the same associated polynomial. Now, suppose M is 
the Seifert matrix of a knot (or link) K, then 
det(M + MT) 
is an invariant of the knot K. Furthermore, the determinant 
of a knot (or link) K is completely independent of the orien-
tation assigned to K” (Murasugi 1996, 76). 

It is here important to underline that the Alexander polynomial arises 
from the homology of the infinite cyclic cover of the complement of a 
knot. Equivalently it can be derived from considering cohomology of 
the knot complement with coefficients in a flat line-bundle. Following 
Kauffman, we can now define mathematically, in a summarized way, the 
Alexander polynomial.

“Let K ⊂ S3 be an oriented knot or link, and F ⊂ S3 a connect-
ed oriented spanning surface for K. Let q : H

1
(F) × H

1
(F) → Z 

be the Seifert pairing. 

Definition 1. Two polynomial f(t), g(t) ∈ Z(t) are said bal-
anced (written f = g) if there is a non-negative integer n 
such that ± tnf(t) = g(t) or ± tng(t) = f(t).

Definition 2. Let K, F, q be as above. The Alexander Poly-
nomial, ∆

K
(t), is the balance class of the polynomial ∆

K
(t) = 

D(q–tq’). It follows from S-equivalence (due to Seifert) that 
this determinant is well defined on isotopy classes of knots 
and links up to multiplication by factors of the form ± tn” 
(Kauffman 1987, 229).
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Finally, we recall that the topologist Herbert Seifert established an 
important result in 1927 according to which there can be different sur-
faces for isotopic knots. Stated differently, a given knot or link can have 
many various spanning surfaces. For example, two isotopic diagrams will 
have rather different Seifert surfaces. 

(ii) In short, “Donaldson’s result implies that there exist “exotic” 
4-dimensional spaces which are topologically but not differentially equiv-
alent to the standard Euclidean 4-space R4. This is a purely mathematical 
fact. But there is another fact no less important and intimately related to 
the first one, namely the Donaldson’s results are derived from the Yang-
Mills equations of theoretical physics, which are non-linear generaliza-
tions of Maxwell’s equations” (Atiyah 1986, 3–4; 2011, 1986). 

This example proves that mathematical concepts can be rooted, in 
some way, in physical theories, or, to put it in other words, that the 
physical insights concerning the most striking properties of some kind 
of phenomena may suggest very important progress in mathematics, 
and especially lead to discover some mathematical structures that are 
supposed to be closely related to the physical phenomena, which one is 
struggling to describe and to explain. In fact, there are interesting situ-
ations which shows that the meant similarity between ideas about phys-
ical phenomena and purely mathematical structures has led to a further 
deepening and in some cases to an axiomatization of entire fundamental 
field of mathematics.

For instance, the recent Topological quantum field theory2 is a very 
good example that shows how one can “translate” a number of physical 
insights into precise and significant mathematical statements. Clearly 
a great deal of “philosophical” imagination and “mathematical” intuition 
are necessary in order to carry out such a translation. The starting point 
was the recognition of a link between quantum physics and topology and 
therefore of the fact that global aspects are much more important than 
the purely local aspects. Thus, 

“quantum field theory is viewed as the differential ge-
ometry of certain infinite-dimensional manifolds (spaces 

2  Atiyah 1988, 285–299; and Witten 1988, 353–386.
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of connections), including the associated analysis (e.g. 
Hodge theory) and topology (e.g. Betti numbers). One must 
add that the quantum field theory is inherently non-linear, 
and this non-linearity comes from non-Abelian Lie groups. 
Moreover the fundamental topological aspects of such a 
quantum field theory should be independent of the scaling 
or coupling parameters. This means that such topological 
information is essential independently of the analytical de-
tails of the quantum theory. That is why such topological 
understanding is a necessary pre-requisite to building the 
analytical apparatus of the quantum theory. The next step 
is to construct axiomatically this theory in order to formu-
late its essential structural features. Obviously such a con-
struction is of interest independently of any physical inter-
pretation” (Atiyah 1988, 175–6).

Atiyah proposed an axiomatic construction of topological quantum 
field theory (Atiyah 1988, 178). 

“A topological quantum field theory in dimension d de-
fined over a ground ring L, consists of the following data:
(i) A finitely generated L-module Z(∑) associated to each 
oriented closed smooth d-dimensional manifold ∑, 
(ii) An element Z(M) ∈ Z(∂M) associated to each oriented 
smooth (d + 1)-dimensional manifold (with boundary) M.

These data are subject to the following axioms:
(a) Z is functorial with respect to orientation preserving dif-
feomorphism of ∑ and M,
(b) Z is involutory, i.e. Z(∑*) = Z(∑)* where ∑* is ∑ with oppo-
site orientation and Z(∑)* denotes the dual module,
(c) Z is multiplicative.

The first axiom means that an orientation preserving 
diffeomorphism ƒ: ∑ → ∑’ induces an isomorphism Z(ƒ) : 
Z(∑) → Z(∑’) and that Z(gƒ) = Z(g) Z(ƒ) for g: ∑’ → ∑”. Also 
if ƒ extends to an orientation preserving diffeomorphism 
M → M’, with ∂M = ∑, ∂M’ = ∑’, then Z(ƒ) takes Z(M) to Z(M’). 
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The meaning of the second axiom is clear when L is a 
field in which case Z(∑) and Z(∑)* are dual vector spaces. 
This is the most important case and, for physical examples 
L = C (or perhaps R). However, there are interesting exam-
ples with L = Z. In this case the relation between Z(∑) and 
Z(∑*) is like that between integer homology and cohomolo-
gy. The duality can be formalized by considering free chain 
complexes. But instead we may take L to be a field and the 
case L = Z can essentially be replaced by the fields Q, Zp.

The multiplicative axiom asserts first that, for disjoint 
unions, we have

Z(∑
1
 ∪ ∑

2
) = Z(∑

1
) ⊗ Z(∑

2
).

Moreover if ∂M
1
 = ∑

1
 ∪ ∑

3
, ∂M

2
 = ∑

2
 ≈ ∑*

3
 and M = M

1
 ∪ ∑

3
 M

2
 

is the manifold obtained by gluing together the common 
∑

3
-component, then we require:

Z(M) = ‹Z(M
1
), Z(M

2
) ›.

Where ‹,› denotes the natural paring

Z(∑
1
) ⊗ Z(∑

3
) ⊗ Z(∑

3
)* ⊗ Z(∑

2
) → Z(∑

1
) ⊗ Z(∑

2
)”.

It is here worth mentioning the intimate interaction highlighted in the 
last three decades, which is of fundamental importance both for mathe-
matics and theoretical physics, between non-Abelian gauge theory and 
the algebraic and topological theory of four-dimensional compact man-
ifolds. Actually, in this example there is more than an analogy between 
physical properties of phenomena (in most the cases, theoretically stated 
but not necessarily empirically observed) and mathematical structures 
and invariants.

Still a few words on this subject are in order. The starting point for 
Donaldson’s work is Yang-Mills theory, an example of non-Abelian gauge 
theories (see Donaldson 1983, and Witten 1988). Yang-Mills is defined 
on a four-dimensional manifold M, and the action is given by

A → ∫
M ||FA

||2,

where A is a connection with curvature F
A
. The action is minimized by 

instantons, which are solutions to the self-dual Yang-Mills equations. 
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One can associate to an instanton an integer k known as the charge, and 
study the moduli space of instantons of charge k. When M is a complex 
algebraic surface this can be described using algebraic geometry. Using 
moduli spaces, Donaldson defined invariants of the manifold M. One 
crucial point is to show that they are invariants of the smooth structure 
and do not depend on the choice of Riemannian metric on M. 

We may now compare Yang-Mills theory to electromagnetism. Both are 
gauge theories, but in Yang-Mills the non-Abelian nature of the group 
(the non-commutative compact Lie group SU(2)) leads to non-linear equa-
tions. The most remarkable fact is that in this theory a metric is used in 
the definition of the fundamental equations, but the invariants produced 
are metric-independent. It is now natural to ask if there is a physical 
interpretation of the Donaldson invariants. Edward Witten showed in the 
late 1980’s that Donaldson theory might be regarded as an N = 2 twisted 
supersymmetric Yang-Mills quantum field theory (see Witten, 1988). Here 
the “twisting” involves changing the spin of certain particles, and make 
the theory into a metric-independent topological field theory. We saw 
thus that these invariants reveal themselves to be very important in order 
to elucidate certain aspects of gauge theories. 

On the other hand, fundamental results obtained by P. Kronheimer and 
T. Mrowka (1994) showed that, 

“starting with a gauge-theoretic treatment of surfaces in 
four-manifolds, one is able to found recurrence relations 
for the Donaldson invariants, and to show that, for a large 
class of four-manifolds M, the generating function for these 
invariants could be expressed in terms of the intersection 
form of M, together with a finite number of basic classes 
in H2(M). Recent progress in this field has involved the no-
tion of duality. One early example is the duality between 
electricity and magnetism in Maxwell’s theory. A more so-
phisticated kind of duality was conjectured by C. Montonen 
and D. Olive in 1977 to hold for non-Abelian gauge theo-
ries. They suggested that, given a Yang-Mills-Higgs gauge 
theory with group G, one could form a dual theory with a 
“dual” group G*, in such a way that gauge particles mediat-
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ing physical forces in one theory correspond to monopoles 
in the dual theory, and vice versa. This duality interchanges 
electric charges (related via Noether’s theorem to the ex-
istence of symmetries), and magnetic charges, which are 
topological in nature (related to the degree of the Higgs 
field), that is the maximal tori of G and its dual group in the 
usual sense of tori” (Atiyah 1966, 5–6).

Let us briefly consider another important example, which is closely 
related to the above. «One of the great mathematical advances in this 
century was the introduction of characteristic classes by Whitney and 
Stiefel in 1935, characteristic forms by Pontrjagin (over a real fiber space) 
and Simons-Chern forms (over a complex space) some years later. Intu-
itively, these “objects” are geometrical and topological invariants that 
can be classified in different families even though they are all mutually 
related. Thus, we can topologically transform a surface (or a manifold) 
into another if they have the same characteristic invariants (and if the 
dimension of space is compatible with the type of transformation). These 
invariants and their corresponding algebraic structures can be techni-
cally very complicated. The two invariants mentioned above globally 
characterize the mathematical objects of fiber spaces and connections, 
which in turn imply several basic algebraic and geometric notions such 
as homology (homology group, intrinsic homology, singular homology, 
algebraic homology, functors, etc.), cohomology classes, homotopy, etc. 
Two examples of homology and cohomology that are very important in 
contemporary physics (and especially in topological quantum field the-
ory) are bordism and cobordism as developed by René Thom, John Milnor 
and others, and ordinary homology H(X) (see Bennequin (2001)). In fact, 
several notions of classical field theory can be expressed by cohomology. 
The most recent quantum field theories, re-interpreted in the mathemati-
cal framework of gauge theory, show a massive presence of cohomologi-
cal ideas, seen in some cases as a generalization of characteristic classes 
such as those of Euler-Poincaré. A very interesting example in our time 
is that of a non-Abelian cohomology space of Riemannian surfaces or 
manifolds with boundary” (Boi 2004b, 1788).
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For each topological space X, the commutative group Ω(X) can be 
defined as follow. 

“Continuous maps ƒ : Y → X from oriented and compact 
manifolds with boundary Y in X are called chains. Disjoint 
union and change of orientation define the sum and dif-
ference of chains respectively. The boundary of X is its re-
striction to the boundary of Y. It is well-known (by a funda-
mental theorem of algebraic geometry) that the boundary 
of a boundary is empty: ∂ ∙ ∂ = 0. A cycle is a chain whose 
source has non-boundary. The equivalence classes of cy-
cles form the group Ω(X). The Thom ring is the bordism of 
a point. With the product Y × X one can see that Ω(X) is a 
module over Ω, so that Ω acts on Ω(X). To every continuous 
map X

1
 → X

2
 is associated a linear transformation of Ω(X

1
) 

into Ω(X
2
); we have then a functor. The cobordism coho-

mology Ω*(X) is obtained by taking the homotopy classes 
of continuous maps of X into a given space, in fact a nested 
sequence of topological spaces, the Thom spectrum. The 
cohomology (the theory Ω*) is richer than the homology 
(Ω), dealing with rings having all sorts of operations. Co-
bordism is an equivalence relation on the set on submani-
folds, say N and N’ of M; which means that the cobordism Z 
transform N into N’. M designate a compact oriented man-
ifold with H

1
(M) = 0. We say then that two submanifolds N, 

N’ are cobordantes in M if there is a compact Z = M × [0,1] 
so that ∂Z = N × {0} ⊆ N’ × {1}” (Boi 2004, 1792–93).

These brief considerations serve to highlight some basic characteristics 
of cohomology that make it a good basis for building a richer and more 
subtle theory of the spatial continuum and of space-time, with significant 
theoretical and philosophical consequences for physics. Some of these 
characteristics are: (i) Homology is constructed by quotienting a part of 
the data (cut and gluing). It stabilizes forms. (ii) It shows the close rela-
tionship that can exist between figures and numbers, especially coef-
ficients. We can reconstruct a new ring Ω from combinations of chains 
with rational (Q) or complex coefficients (C). This allows us to “localize” 
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and to “complete” respectively. (iii) Its most remarkable property is uni-
versality. There are many cohomologies that give the same results. More 
precisely: different definitions lead to isomorphic (or related, at the very 
least) theories. This means that axiomatic constructions are conceivable. 
(iv) Cohomology engenders forms; in some sense, it defines forms. In 
any case it ensures a certain stability and genericity. Several notions from 
classical field theory can be expressed cohomologically. Furthermore, the 
most recent quantum field theories, re-interpreted in the mathematical 
framework of gauge theory, highlight the basic role played by cohomol-
ogy and characteristic classes. These concepts are also utilized in the 
attempts to give a consistent mathematical formulation and an intelligi-
ble physical interpretation of other gauge quantum theories such as the 
quantum electrodynamics of Dirac, Feynman and Schwinger.

3. The Kant’s Conception of Space, and Some Mathematical Results 

The last remarks are of interest to our discussion of the Kantian con-
ception of mathematics as well as of intuition. Kant has argued: (1) First 
(in the Transcendental Aesthetic), that the mathematical knowledge is 
based upon intuition rather than upon concepts, and that space and time 
are nothing else but pure forms of our sensibility which are necessary in 
order to organize the variety of very different unrelated empirical sensa-
tions, yet still unable to yield knowledge of phenomena; and (2) Second 
(in the Transcendental Analytic), that the formal determinations (or pure 
intuitions) of space and time enable the anticipation of phenomena, 
because they provide an a priori representation of these same phenom-
ena, which can be found a posteriori to exist empirically. 

Of course, here we are concerned with the distinction made by Kant 
between the metaphysical nature of space and time and their transcen-
dental character. From the metaphysical point of view, space and time 
are schemes and functions of our sensibility or subjectivity at once. Fur-
thermore, Kant states that they are necessary and a priori. Finally, he 
derives from the previous two features the existence of certain axioms 
of geometry as well as their apodictic validity. 

Recall two of these axioms. The first states that the straight line – with 
the properties ascribed to it by Euclid – is the shortest path joining any 
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two points in the plane. The second say that our space must necessar-
ily have three dimensions. Now, we already saw talking about Riemann, 
that the 3-dimensional feature we ascribe to our space is much more a 
hypothesis allowing for localizing the objects of perception in the sur-
rounding space than a necessary and a priori property inherent to space. 
Of course, anyone would deny the fact that our space is, mathematically, 
3-dimensional and that it is locally Euclidean, but such a statement by 
no means follows from a supposed a priori nature of the sensory or sub-
jective space, whatever it could be. On the contrary, this statement has 
the following two meanings:

(i) The postulate asserting that space has three dimensions is math-
ematical in nature and it is obtained by idealization from the objective 
properties of things and bodies “living” in the surrounding (Euclidean) 
space. In other words, it means that we are able to localize and represent 
these same things and bodies using a three-values system of coordi-
nates or a system of three continuous and linear functions. Moreover, we 
ascribe to such a space some fundamental properties like homogeneity, 
isotropy and infinity. Notice however that all these properties are essen-
tially metrical in nature, for actually topologically the things turn to be 
different. In fact there exist 2- or 3-dimensional spaces that are locally 
Euclidean, yet globally non-Euclidean. For example, the Clifford surface, 
whose metrical relations are the same as those that characterize the 
elliptical (Riemannian) space, fulfills nevertheless the principal axioms of 
Euclidean geometry, i.e., it can be conformally mapped into small regions 
of the Euclidean plane. A parallelogram over a Clifford surface enjoys 
the following properties: (a) The straight lines of the Euclidean plane are 
represented by geodesics, (b) The sum of angles of a Euclidean triangle 
is equal to 2π, (c) The curvature is everywhere constant and equal to 0.

The Clifford parallelogram is formed as follows. 

“Given any two intersecting lines, the left parallel to one 
through any point of the other meets the right parallel to the 
latter through any point of the former. The quadric generat-
ed by the above systems of lines is called a Clifford surface. 
By a famous theorem of Gauss, the “total curvature” of a 
geodesic polygon on any surface is measured by its angular 
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excess (as compared with a Euclidean polygon of the same 
number of sides). Since a Clifford surface is covered with a 
network of Clifford parallelograms, as small as we please, 
it follows that this surface has zero curvature everywhere, 
which means that it can be mapped without distortion on 
a suitable region of the Euclidean plane. To use a nice pic-
ture, a small creature whose world was a Clifford surface 
would find his practical geometry to be Euclidean, until he 
explored so far as to discover that this “flat earth” was finite 
(though unbounded). In other words, after cutting the Clif-
ford surface along any two intersecting generators, we can 
“develop” it on the Euclidean plane, just as we can unroll 
a cylinder. The Clifford parallelogram, and the whole sur-
face will appear as the interior of a rhombus of side π and 
angle y. Thus its total area is π2 sinψ. A Clifford surface is 
a surface of revolution in two distinct ways. It follows that 
the geodesics x – y = c are circles (of the same radius for all 
values of c), and likewise the geodesic x + y = c. When the 
surface is developed on the Euclidean plane, two such cir-
cles, one of each kind, appear as diagonals of the rhombus. 
Hence, by Euclidean trigonometry, their circumferences are 
2π sin 1/2 ψ. In the special case of a rectangular Clifford 
surface, the rhombus is a square, and the circles are equal. 
A Clifford surface, being closed and uniform like a sphere, 
developable like a cylinder, and ring-shaped like a torus, is 
no easy to visualize. Unlike a sphere, it has zero curvature; 
moreover, in the rectangular case, its “inside” and “outside” 
are congruent. Unlike a cylinder, it is finite, and has two 
systems of generating lines” (Coxeter 1988, 143–45).

(ii) The second meaning above has manly a physical and physiologi-
cal content. It entails the fact that the possibilities of movement in our 
3-dimensional space are fairly limited. In fact, we can essentially move 
only in three directions; however, since we need much more free mobility 
for our displacements in space, we are forced to introduce some com-
plicated geometrical objects and operations. That is one of the reasons 
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because the three- and four-dimensional manifolds have a very complex 
geometrical and topological structure which still resists to a fully under-
standing, in spite of the outstanding results obtained by Steven Smale 
in 1958. 

Roughly, Smale discovered that the manifolds of greater dimension 
than 4 (≥ 4) are relatively easily to understand; he proved the Poin-
caré’s conjecture for n = 5. The Poincaré’s conjecture states that the 
only 3-dimensional closed and simply connected manifold is the topo-
logical sphere S3; some time later, these conjecture was generalized to 
manifolds of any dimension. Another outstanding result was obtained by 
Michael Freedman, who gave the complete classification of 4-dimensional 
simply connected topological manifolds; this hold as proof of the gener-
alized Poincaré’s conjecture in 4-dimensions. More precisely, Freedman 
has proved that any quadratic form Q is the intersection form of a certain 
topological closed and simply connected manifold V4, which show that 
it may exist a very intimate relationship between algebra and topology. 
There has been finally the very fundamental result by Simon Donaldson 
in 1983, which showed, on the one hand, that relatively few 4-dimen-
sional topological manifolds discovered by Freedman possesses a dif-
ferentiable structure, on the other hand, that the world of differentiable 
4-dimensional manifolds is much more richer and deeper than that which 
characterize the other dimensions. For example, R4 possesses infinity 
of differentiable structure called “exotic”. In more technical words, Don-
aldson has first showed that, in the differentiable framework, there are 
strong constraints so that an integer unimodular quadratic form can 
be an intersection form. This completely contrasts with the topological 
situation where there is none of such restrictions. The result of Donald-
son shows after all that the distinction topological/differentiable is very 
hard to understand in 4-dimensions and maybe still more complicated 
in 3-dimensions. 

These results are very important for a deeper philosophical reflection 
about the nature of space and the kind of structures that it can support. 
In fact, they push far beyond the possibilities of a new inquiry into the 
mathematical as well as ontological meaning of space. In particular, they 
shows that one can conceive and prove the mathematical existence of 
many kinds of spaces whose abstract properties does not share nothing 
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with those properties we generally ascribe to our sensory space. Recall 
some basic facts we had learned in the last half-century from topology 
and differential topology.

(i) The same space (or manifold) can bear different geometrical struc-
tures; this is especially true for R3 and R4. Now it is clear that this fact 
contradict one of the most important assumptions of the Kant’s theory 
of space and geometry (as formulated in the Critique of Pure Reason, 
“Transcendental Æsthetic”), namely the uniqueness of the geometrical 
structure of our usual Euclidean space, whose most essential properties 
can be stated by a set of very simple axioms which pertain to intuition 
but not to concepts. (ii) Two spaces (or manifolds) can be homeomor-
phic (topologically equivalent) although not diffeomorphic (differentially 
equivalent). An important theorem states that there exists an exotic R4 
which is homeomorphic to, but not diffeomorphic to R4. (iii) Two or more 
inequivalent manifolds can carry the same intersection form. 

“In order to explain the important notion of intersection 
form, consider one of the classical results of topology, that 
is the classification of compact connected surfaces (without 
boundary) up to diffeomorphism. Let ∑ be such a surface 
and consider closed curves γ

1
 and γ

2
 on ∑. By a small defor-

mation we can make γ
1
 transversal to γ

2
. The curves then 

intersect in a finite number of points. This number, modu-
lo 2, turns out to depend only on the homology class of g

1
 

and γ
2
 in H

1
(∑; Z

2
). We thereby get a symmetric bilinear form 

µ on H
1
(∑; Z

2
) called the intersection form of ∑. Poincaré du-

ality says that this form is nondegenerate. One define the 
form to be of type II if µ(x, x) = 0; otherwise, we say it is of 
type I” (Lawson 1985, 1–2).

As Lawson further showed, from that we get two important theorems 
which emphasize the point (iii).

Theorem 1. Two compact connected surfaces are diffeomorphic if and 
only if their intersection forms are abstractly equivalent. Surfaces can 
be separated into two classes: type I and type II: those of type I are non-
orientable and can be decomposed into a connected sum of real projec-
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tive planes. Those of type II are orientable and can be decomposed into 
a connected sum of tori. To put it into a formulae, we have for the type 
I – nonorientable surfaces (manifolds) with (w

1
 ≠ 0) and

µ ≅ (

 
 
1

1
1
    

    ⋱ 1)

 
 

 

 – ∑ ≅ P2(R) # ... # P2(R),

and for the type II – orientable surfaces (manifolds) with w1 = and 

µ ≅ 
(

1
⋱

1
  

   
) 

 – ∑ ≅ (S1 × S1) # ... # (S1 × S1). 

Theorem 2. (J.H.C. Whitehead). Two compact simply-connected 4-man-
ifolds are homotopy equivalent if and only if their intersection forms are 
equivalent.

(iv) It is clear that (a) there are several kinds of n-dimensional spaces 
or manifolds whose structures my be equivalent, partially equivalent (for 
example metrically though not topologically), or not at all equivalent; (b) 
the same space or manifold can carry many different structures, either 
differentiable or topological; (c) each of these spaces can be character-
ized by a set of objective mathematical properties, in the sense that they 
would not depend on our perception or the organization of our inner 
sensory systems, i.e., on the “subjectivity” as Kant believed. In fact, these 
objective properties enable us to distinguish between different family of 
geometrical structures and to say whether two spaces are equivalent or 
not, and also to recognize the type of equivalence we are dealing with. 
For example, the connectedness, the orientability or nonorientability, the 
curvature and so on, are objective properties of space strictly speaking.

Finally, we would like here to mention that the French mathematician 
and philosopher Henri Poincaré has expressed a different point of view 
from that stated by Kant. The relevant points of the Poincaré’s reasoning 
can be summed up as follows.

1) First, the sensory space has little in common with geometrical space. 
This because the space constructed starting from a classification of our 
sensations according to their physiological sameness is still not a geo-
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metrical space, because it would be neither infinite, nor homogeneous, 
nor isotropic. As Poincaré stressed,

“Seeing that our representations are simply the reproduc-
tions of our sensations, therefore we cannot image geo-
metrical space. We cannot represent to ourselves objects 
in geometrical space, but can merely reason upon them as 
if they existed in that space. (...) Geometrical space, there-
fore, cannot serve as a category for our representations. 
It is not a form of our sensibility. It can serve us only in 
our reasoning. It is a form of our understanding” (Poincaré 
1898, 21–22). 

2) Second, a geometrical space is given once we have properly intro-
duced and defined the concept of group of transformations and its for-
mal properties. In other words, it is the group (and the geometry we asso-
ciate to it) that yields a certain type of space; moreover the way we make 
act the group upon a space (or a manifold) generates the characteristic 
properties of this space. As a modern mathematical translation of this 
fact, mention for example that the classification of compact simply-con-
nected topological 4-manifolds can be stated in terms of an intersection 
form on the middle-dimensional homology group.3

Now return to the concept of group. First of all, it is important to 
understand that its formal properties are independent of the qualitative 
character of the phenomena like different kind of changes affecting their 
state or their direction. Mathematically, a group is the set of a certain 
number of operations (including addition, multiplication, associativity, 
continuity, inverse map, closure, compactness and so forth) and of all 
combinations which can be made of them. If these operations combine 
according to the same laws, we then say that the two groups are iso-
morphic. For example, the different permutations of a certain number 
of objects, no matter what kind of objects they are, form a group. The 
formal properties are precisely those which are common to all isomor-
phic groups. 

3  See on this subject S. Eilenberg 1950.
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From what precede, Poincaré was lead to make the distinction between 
the degree and the order of a group: the first refers to the number of 
the objects and the second to the number of the permutations. In fact, 
two groups may be isomorphic and their permutations may combine 
according to the same laws without their degree being the same. Let 
us consider the different ways in which a cube can be superposed upon 
itself. The vertices may be interchanged one with another, as may also 
be the faces and the edges; whence result three groups of permutations 
(or of infinitesimal operations) which are evidently isomorphic among 
themselves; but their degree may be either eight, six, or twelve, since 
there are eight vertices, six faces, and twelve edges. According to Poin-
caré, the degree is, so to speak, a material element, and the order a 
formal element, the importance of which is far greater. We see thus that 
geometry is not an experimental science; experience forms merely the 
occasion for our reflecting upon the geometrical ideas which pre-exist 
in us. Space is but a form of our sensibility, since we cannot represent 
things to ourselves as they actually are, especially when the dimension 
of space is greater than three, but we think upon things as if they were 
embedded or immerged in space. According to Poincaré, 

“What we call geometry is nothing but the study of for-
mal properties of a certain continuous group; so that we 
may say, space is a group. The notion of this continuous 
group exists in our mind prior to all experience” (Poincaré 

1898, 41). 

To better understand what is meant by “formal properties” of a group, 
we can think of the simplest case of a group, namely the group of Euclid-
ean displacements or the group of all rotations in three-dimensional 
Euclidean space SO(3).4 Another fundamental example is that of a topo-
logical group (see Pontryagin, 1946). In mathematical parlance, it is a 

4  Recall that «the group SO(3, 1) does for Minkowski space-time or less what SO(3) 
does for Euclidean space. It is called the Lorentz group. One might think of it as the group 
of 4 × 4 matrices preserving the standard Minkowski metric
 (, ) = – 00 + 11 + 22 + 33.
It contains the spatial rotations in an obvious way, but also contains the Lorentz transfor-
mations that mix up space and time coordinates» (Baez & Muniain 1994, 163).
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group G endowed with a Hausdorff topology such that the map G × G → G 
that sends (x, y) onto xy–1 is continuous. It follows at once from this 
definition that the inversion map on G is continuous, because this map 
can be factored according to the scheme x → (1, x) → 1x–1 = x–1, where 
1 stands for the neutral element of G. Hence the multiplication is also a 
continuous map G × G → G, because it can be factored according to the 
scheme (x, y) → (x, y–1) → x(y–1)–1 = xy. In particular, this implies that if 
x is any element of G, then the left and right translations effected by x 
on G, sending an element y of G onto xy or yx, respectively, are homeo-
morphisms of G onto G.

The topology of a topological group G is determined by any fundamen-
tal system of neighborhoods of 1, i.e., a family of neighborhoods of 1 
such that every neighborhood of 1 contains a member of the family. In 
fact, if S is a fundamental system of neighborhoods of 1, then a subset 
A of G is open if and only if, for every point x of A, there is a member V 
of S such that V

x
 ⊂ A. It is convenient to define a topology on a group 

G by giving a fundamental system of neighborhoods of 1. A family S of 
subsets of a group G is a fundamental system of neighborhoods of 1 for 
a topology with which G is a topological group if and only if the follow-
ing conditions are satisfied: (i) The intersection of S is the set consisting 
of 1 alone. (ii) The intersection of every pair of members of S contains 
a member of S. (iii) For every member V of S, there is a member W of S 
such that WW–1 ⊂ V. (iv) If x is a point of G and V is a member of S then 
xVx–1 contains a member of S.

In light of the previous discussion, the main question which we must 
now ask is the following: 

“why does the number of spatial dimensions play such 
a important role and why, in particular, is the structure of 
our space R3 and of space-time R4 of relativistic physics 
so difficult to comprehend? The first conceivable answer 
to this question is that in larger dimensions there is more 
free space available to us to perform the necessary geo-
metrical constructions, whereas in three dimensions our 
movements are fairly limited. These constructions do not 
use complicated objects, just simple discs which are em-
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bedded in the manifold being studied and which do not 
cut across each other. The existence of such discs is nec-
essary, from a technical point of view, in order to move 
certain more complicated objects, thus forcing them to be 
disjoint each from one another: but just as two lines can 
be separated from each other in the third dimension, two 
lines (or two surfaces) can always be separated in the fifth 
(or larger) dimension. On the other hand, in three dimen-
sions, two discs may cut across each other along a line or, 
in the fourth dimension, at two isolated points” (Baez & 
Muniain 1994, 163).

4. The Role of Intuition in Mathematics and Physics According to 
Kant and Husserl 

It is not always easy to understand exactly what Kant means when he 
speaks about intuition. Nevertheless, we can distinguish at least three 
main aspects of Kant’s reasoning.

(1) Firstly, there are sensual or empirical intuitions that are directly 
associated with our perception of external phenomena, and which affects 
our sensory system, the latter remaining however unaffected by these 
external phenomena. Thus, here Kant is implicitly supposing that intu-
ition is nothing more than the sensual content which supplements our 
different perceptions; however, in such process there is not yet active 
intervention of the subject on these contents, nor does he construct truly 
objects of experience starting from these phenomena, which are meant 
by Kant as given in their immediate appearance and which are hence 
perceived through our intuition in a passive manner.

(2) Then come the pure intuitions of space and time which are certainly 
linked to our sensual perceptions, and which organize these perceptions 
rather than to depend upon them. In other words, these intuitions are not 
derived from our experience, and there is no direct relationship between 
the two. On the contrary, what is true for Kant is that our experiences 
only become objective and meaningful to us when we apply the pure form 
of intuition, i.e. space and time; outside of these forms of intuition, no 
experience is possible. 
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But what is the precise nature of these intuitions? And how do external 
phenomena constitute within these intuitions or claim their existence 
thanks to them? Kant does not seem to put forward any real answer to 
such questions, which are nevertheless important in order to understand 
the role of intuition in the knowledge process. If we were to retain one 
element of Kant’s reasoning, we should retain this: intuitions of space 
and time are qualities which are inherent to, or constitutive of our sen-
sory activity or which are a function of our subjectivity. According to 
Cassirer, the expression of our subjectivity serves to further underline 
the active and productive nature of the pure intuitions of space and time 
and cut the direct ties which link them to the empirical sensations. 

Let’s stress, at this point, that actually certain spatial dimensions of an 
object, as well as a good number of their geometric properties, cannot be 
represented intuitively. Still a direct perception of 3-dimensional objects 
does, in most situations, present some serious difficulties, for which we 
need, if we are to overcome them, to use certain geometric notions which 
supply for our immediate and direct intuition. 

It was notably Husserl, in Thing and Space (Lectures of 1907), who 
showed how the constitution of physical objects, such as spatial objects 
falling within our field of perception, require the execution of a number 
of operations and gestures to render the geometric properties that can 
be virtually transferred to the objects by means of “intuitive filling-in” 
(anschaulich Erfüllung), according the Husserl’s expression. This intu-
itive completion is, of course, a consequence of the fact that any sub-
ject, starting with its body, is able to execute operations which obey 
certain geometrical movements such as rotations, or different kinds of 
movement such as ocular, motor or kinesthetic movements, etc. These 
schema, although being founded on their own laws and abstract geo-
metric properties, and hence a priori in this sense; cannot become truly 
effective unless they are in concreto involved in the constitution of spa-
tial objects. 

When we pass on to a productive thinking of ideal geometric objects 
as, for example, n-dimensional space, connections, fiber spaces, mod-
ule space, categories, and numerous other algebraic and topological 
structures which belong specifically to modern mathematics, and where 
sensual intuition is entirely lacking, another type of mathematical imag-
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ination and visualization is required, and therefore we need to look for 
a deeper form of intuition. 

5. The Difference Between Sensual Intuition and Mathematical 
Intuition: From Surfaces to Knot Theory

Let us make a few reflections about some aspects of this important 
issue. First, we propose to distinguish between the perception of catego-
ries (or schema) of forms and the perception of forms. The objects that 
fall into the second category can be simply seen (although, of course, the 
vision process is a complex and multimodal one), whereas the objects 
which fall into the first category cannot be simply and directly seen, 
but visualized or imagined. Thus the second kinds of objects cannot 
be “seen” by our usual visual abilities, for, in fact, they require a sort 
of schematic and imaginative vision (more a vision by the mind than a 
vision by the eyes), which we would like to suggest to name mathematical 
intuition or mathematical imagination. For this last case, one can make 
a further distinction. There can be, on the one hand, an intuition that is 
essentially a direct (intrinsic) mental vision of, say, a mathematical objet 
such as a surface, a manifold, etc., or of a physical phenomenon, thereby 
we anticipate on the further mathematical exposition and phenomeno-
logical investigation of these same objects. On the other hand, we have 
an intuition which engages from the very outset some mathematical con-
cepts. Generally, these two types of intuition operate at distinct levels of 
our consciousness and mathematical activity, but they can also interact. 

Otherwise stated, the word “visualize” has two meanings: to make 
visible (form a visual image), and to imagine (form a mental image). 
According to J.J. Gibson, “A surface can be seen; a plane can only be 
visualized”. (Gibson 1979). The term “surface” can have several mean-
ings, whose two are very important for perception and for mathematics 
respectively. The common meaning, as meant by Gibson, refers to the 
perceived surfaces of objects such as mice, chairs and mountains (call 
them the real-world surfaces). The other is the abstract mathematical 
concept, an intrinsic two-dimensional manifold, which can be visualized 
only by the mathematical imagination. It is this second kind of visualiza-
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tion that is powerful in mathematics for it combines visual and non-visual 
information in a fruitful way.

For example, we can see real-world objects, surfaces and especially 
edges of these surfaces. We see (to a certain extent) colors; we organize 
what we see and, that is, we range (or classify) what we see according to 
some abstract schema; in other words, there are typically many objects in 
view, so we try to organize and group them and detect patterns of their 
arrangements. We detect small patterns with considerable repetition, 
called textures. Examples of textures are the distant pattern of trees as 
seen from a high altitude, the grain of wood on a tabletop or the nap of 
a piece of cloth. On all real world surfaces, we see colors and textures. 
We can detect motion and changes of appearance of objects, of groups 
and of textures. Motion plays an important role in the basic process of 
visual understanding of ordinary objects. She is important since it gives 
a continuous family of views. We have depth perception – the visual 
ability to judge distance from an object. This process is complex, with 
factors interrelated in ways that are still not well understood. Certainly 
an important aspect is binocular (stereoscopic) vision which allows men-
tal triangulation. Additional important clues are also given by relative 
apparent motions of objects as we, or the objects move. 

However, we cannot see the most the geometrical objects, but only 
visualize or imagine them in connection with the corresponding mathe-
matical objects such as multidimensional space,5 invariants, connection, 
homeomorphism, homology, etc. As a first remark, we can say that 

“three-dimensional manifolds in R4 are more difficult to 
visualize than two-dimensional surfaces in R4, since the ra-
tio of necessary information to visible information is much 
smaller. To take a very important example in our-days de-
velopments of certain branches of pure mathematics, let’s 

5  N. Wiener has written: “Four-dimensional geometry certainly exists as a general form 
of [mental] deduction, but there is no reason whatever to assume the [physical] existence 
of four-dimensional space” (Wiener 1922). The word “four-dimensional geometry” refers 
to pure mathematical geometry, whereas in the expression “four-dimensional space” the 
word space can also refers to physical space. Indeed, it is 4-dimensional space-time that 
occurs in Einstein’s general theory of relativity and not four-dimensional space. 
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mention the topological knot theory and especially some of 
its fundamental facts, in order to show that a number of re-
sults related to this theory are completely counter-intuitive, 
although they need, to be grasped, a great deal of inventive 
intuition and mathematical imagination” (Roseman 1997, 
444–445). 

(i) In order to understand the mathematical signification of a knot we 
first need some basic knowledge about the concept of embedding, that is, 
the fact that, X and Y being topological spaces, an embedding of X into Y 
is a one-to-one bi-continuous map of X into Y – that is a homeomorphism 
of X onto ƒ(X). Further, the fact that, if X and Y are smooth manifolds, 
an immersion of X into Y is a smooth function, ƒ, from X into Y that is 
locally one-to-one but not necessarily globally one-to-one. Equivalently, 
we can define an immersion as a smooth map whose differential, dƒ, is 
non-singular. An immersed manifold is an image of an immersion. For 
example the limaçon, the graph in polar coordinates of r = 1/2 + cosq, 
is an immersed circle in the plane. Another important example, the most 
familiar image of the Möbius band is a “circular band with a half-twist”—
call this subset M

1
. This is an image of one embedding of this 2-dimen-

sional manifold into ambient space R3. Recall the counter-intuitive fact 
that this manifold is non-orientable. 

Let’s now introduce the concept of isotopy, which is another funda-
mental concept of knot theory. 

“From a topological point of view, it allows to define the 
equivalence relation of manifolds or subsets of Rn. Two 
subsets A

1
 and A

2
 of Rn are isotopic if there is a non-rigid 

motion in Rn which takes A
1
 to A

2
. That is, there is an object, 

A, and continuous family of embeddings, ƒ
t
: A → Rn with 

ƒ
1
(A) = A

1
 and ƒ

2
(A) = A

2
, where t ∈ I, I being the unit inter-

val. Such a map will be called an isotopy of A. Two subsets 
of Rn are equivalent if there is an isotopy between them. 
Consider the Möbius band in R3, M

1
, described above. Now 

let M
2
 be a similar example: “circular band with three half-

twists”. Wee can show that M
1
 and M

2
 are not isotopic. To 

prove that, we have to consider that, if they were equiva-
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lent, then the corresponding boundary sets would be equiv-
alent as circles in R3. But the boundary of M

1
 is a trivial knot 

and the boundary of M
2
 is a non-trivial knot called a trefoil 

knot” (Roseman 1997b, 68).

(ii) A knotted manifold is defined to be the image of an imbedding of 
a compact manifold into Rn for some n. The isotopy equivalence class of 
a knotted manifold will be called a knot. If we have one circle in R3 this 
knotted manifold is called a knotted circle. If we have several circles in 
R3 this knotted manifold is called a link. It is easy to create examples of 
knotted circles (or embedded circles) in R3. A knotted surface is a knotted 
2-dimensional manifold, with empty boundary, in R4. This can be con-
sidered as a smooth sub-manifold or a piecewise-linear manifold—that 
is, a two-dimensional simplicial complex that approximates a smooth 
knotted manifold. Generally, surfaces in R4 (or even in R3) are difficult 
to describe and even more to visualize. Knotted circles are an important 
tool in the study of the topology of R3. It is central to the investigation 
of three-dimensional objects. It is also of interest to chemists and biol-
ogists since molecules (including DNA) have been found with a knotted 
structure. Furthermore, properties of these molecules seem to depend on 
the “knottedness” and its associated numerical and/or topological invari-
ants like the linking number, the writhe number, and the twist number. 
In physics, remarkable connections have been found between quantum 
physics and knots, especially to knot diagrams and their representations 
(see Carter, 1995; Boi, 1994; 1995). 

“To ‘see’ why knotted circles are key in topological un-
derstanding of three-dimensions, we need to know three 
basic mathematical facts about circles, which are complete-
ly counter-intuitive in the first sense (“empirical intuition”) 
that we have attributed to the term “intuition”. (a) There are 
no knotted circles in the plane. (b) There are many ways to 
knot a circle in R3. (c) There are no knotted circles in R4. In 
summary, R3 has the unique property that in it we can knot 
circles (1-dimensional spheres). Let’s give some other pro-
found and counter-intuitive mathematical properties and 
results concerning knotted surfaces in four-dimensions. 
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(d) It is impossible to knot a sphere in R3. (e) There are 
non-trivial knotted spheres in R4. However, it is impossible 
to knot a sphere in R5. Thus R4 is the unique dimension for 
which spheres can knot. (f) An n-dimensional sphere can be 
non-trivially knotted in a piecewise linear manner in Rm, if 
and only if m – 2 = n» (Roseman 1997a, 68).

(iii) The information about how surfaces knot in three-dimensional 
space, viewed mathematically, results in a structure called a knot dia-
gram. In the mathematical study of knotted circles in three-dimensional 
space, the basic question is: given two knotted circles, are they equiv-
alent? If knots are not equivalent, we generally distinguish them by 
means of topological or algebraic invariants, such as the knot group. 
There are many such invariants, but most are derived from diagram of 
a knot. On the other hand, if knots are equivalent, then we need to find 
an isotopy that shows this equivalence. Thus, symbolic/mental repre-
sentation combined with physical gestures/operations is an important 
part of mathematics. The role of diagrams notably in geometry and 
topology is very important. In most of the situations, these diagrams are 
not used merely as “illustrations”, but as complex symbolic operations 
of a geometric-algebraic nature. Furthermore, these diagrams enable 
to translate (or to reveal) some striking topological properties of the 
knot that is being studied. On the other hand, these topological proper-
ties, once known, may lead to discover new geometric and/or algebraic 
invariants of knots. 

Then, a knot diagram is not simply an “image of a knot”—it is a pow-
erful pictorial and conceptual representation of the knot, useful for fur-
ther mathematical deepening of its properties. One can use the knot 
diagram directly to calculate many geometric and algebraic invariants 
of the knot. The knot group is one such invariant. If M is a submanifold 
of n-dimensional space (or the n-dimensional sphere) the knot group of 
M is defined to be the fundamental group of the complement of M (see 
Boi, 1995; 2006; 2011). Operations on a given diagram can yield a family 
of related knots (the so-called knot skeins) and may be used to calcu-
late a variety of knot invariants. As Kauffman so clearly pointed out in 
(Kauffman, 1988), knot diagrams and geometric manipulations of them 
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provide powerful mathematical results—new topological invariants and 
new insights into previous ones. 

5.1 Back to Kant in the Light of Modern Mathematics and Physics

Let’s now go back to Kant. The idea (which Kant shares) that exists a 
sort of necessary correspondence between geometrical “axioms” (such 
as the three-dimensionality of our space and the essential uniqueness 
of the Euclidean geometry, which I already mentioned) and the evident 
intuitive content to which they refer, appear to be not well-founded and 
must therefore be replaced by a theory according to which mathematical 
objects are first and foremost objects of thought. And even if they may 
turn out to be abstract models allowing to explaining certain catego-
ries of phenomena, they not derive their raison d’être directly from the 
experience nor they do their existence to a priori and subjective laws. 

We could say, therefore, that mathematical objects are “entities” of 
thought and forms or models of the phenomena at once. It is thus pos-
sible that a mathematical structure—for example, the invariants of a 
certain type of four-dimensional manifolds in our-days theoretical phys-
ics—can render (or can correspond to) the essential properties of physical 
phenomena. Returning to our example, this structure would be a group 
of internal symmetries describing the interactions between particles. On 
the other hand, most of the fundamental physical theories entail deep 
mathematical structures, which prove to be indispensable for explaining 
the behavior of phenomena, at the macroscopic aw well as at the micro-
scopic level. General relativity, quantum field theory and gauge theory 
provides very good examples of such a situation. The major problem, for 
today’s scientists and more generally for the theory of knowledge, lies 
in understanding the type of dynamical patterns linking geometrical and 
topological structures to the most streaking features of physical theories. 
Physical intuition and mathematical imagination can make a fundamental 
contribution to the attempts that are currently being made for devel-
oping theoretical models able to find sound mathematical structures 
corresponding to the physical behaviors of phenomena to be explained. 

Let us mention two important examples. 

1) In the eighteen it has been realized that gauge theory is essentially 
one branch of differential geometry which uses the new concepts of 
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vector bundles and fiber spaces with connections, which are of purely 
mathematical character. Now these concepts have become central in the 
understanding of the connection between mathematical structures and 
physical theories, and they directly links geometry and physics; in fact 
one can say that the two are coextensive. Indeed, consider the math-
ematical concept of a space with a connection6 and its curvature (see 
Manin 1981). 

“Let ƒ : M → N be a map between spaces M and N, where 
M, say, represents a model of space-time, and at each point 
p of M there is localized a physical system with the space 
of internal states ƒ–1(p). A connection on geometrical object 
like a fiber space is a rule permitting the transport of the 
system along the curves in M. In other words, if we know 
part of the world–lines and the initial internal state of a 
system in M, then, thanks to the corresponding displace-
ment determined by the connection, we can know the fu-
ture states of the system. According to the recent physical 
theories, a gravitational field is a connection in the space 
of internal degrees of freedom of a gyroscope; the connec-
tion allows us to follow the evolution of the gyroscope in 
space-time. An electromagnetic field is also a connection in 
the space of internal degrees of freedom of a quantum elec-
tron; the connection allows us to follow the evolution of the 
electron in space-time. A Yang-Mills field is yet a connec-
tion, in the space of internal degrees of freedom of a quark. 
This geometrical image seems now to be the most universal 
mathematical model of an ideal universe with a small num-
ber of basic interactions. The state of matter in space-time, 
at each point and each moment, is described by a section 
of an appropriate fiber space N → M. A field is described 
by a connection on this fiber space. Matter acts on the con-
nection by imposing restrictions on its curvature, and the 
curvature, and the connection acts on matter by forcing it 

6  Recall that Levi-Civita, E. Cartan and H. Weyl introduced the concept of connection 
in the early 1920’s.
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to propagate by “parallel displacement” along world–lines. 
The famous equations of Einstein, Maxwell-Dirac and Yang-
Mills are exactly the embodiment of this idea. The geomet-
rical concept of connection has thus become a fundamental 
ingredient of contemporary physic” (Boi 2004b, 1825–26).

So we realize that to each physical entity and their correlated physi-
cal-theoretical model corresponds a local or global structure of differ-
ential and algebraic geometry and topology. The so-called dictionary of 
Yang-Wu (1975) has very well illustrated this important fact. For example, 
field strength is identified with the curvature of the connection; the action 
integral is but a global measure of curvature. Certain topological-alge-
braic invariants in the theory of characteristic classes have been seen to 
be most appropriate to describe the charge of the particle in the sense 
of Yang-Mills. More generally, we can establish a direct correspondence 
from the concepts of gauge field theory to those of the differential and 
topological geometry of fiber spaces. 

But how can we understand precisely the nature of such a correspon-
dence? It should appear enough clear that it is neither of empirical nature, 
nor of logical character, nor of transcendental meaning at least such as 
Kant meant it. The a priori role of many mathematical invariants, as well 
as their constitutive role (that is to say their dynamical power of gener-
ating phenomena), is a very important scientific fact that requires a new 
philosophical analysis. 

Here, we would like to suggest the idea that, fundamentally, physics 
is but geometry in act. This implies not only that geometry produces 
mathematical abstract concepts like manifolds, groups, curvature, con-
nections, fiber spaces, etc., but also that it is, in a way, ontologically 
rooted in reality, because it participate somehow in the properties of 
physical entities and the qualities of phenomena. 

“In fact, some principles of geometrical symmetry (or, 
equivalently, some groups) can be transformed into dy-
namical principles that are in turn responsible for certain 
changes in the phenomena. Thus, the concept of symmetry 
is not just abstract, and its mathematical properties have 
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simultaneously an explanatory power and a capacity to gen-
erate a world of forces, interactions and energy, so that the 
mathematical understanding of this world cannot be sep-
arated of the understanding of reality itself. On one hand, 
one is increasingly led to believe that symmetry might de-
termine at a deep level almost everything. Nevertheless, on 
the other hand, it is not unreasonable to look on topology, 
like symmetry, as some kind of underlying or unifying prin-
ciple which helps us to understand complex (macroscopic 
and microscopic) physical phenomena” (Boi 2003, 216). 

2) Theoretical physics is today faced with two key questions that are at 
the heart of the mathematical developments of quantum field theories, 
which include string theory, topological quantum field theory, non-com-
mutative geometry and loop representation. The first question is: What 
we can mean by quantum geometry? Indeed, we have learned with gen-
eral relativity that space-time geometry shares the same dynamical char-
acter of the electromagnetism field and the other physical fields; and 
we have learned with quantum theory that all dynamical objects exhibit 
quantum behavior: they can be in probabilistic superpositions of states 
and they manifest in quanta at small scale. If we trust the general validity 
of these two physical discoveries, we are led to conclude that space-time 
geometry too must exhibit quantum behavior: it may admit probabilistic 
superpositions and it may manifest itself in quanta at small scale. What is 
then space-time geometry with such features? What kind of mathematics 
can manifest it? What physical meaning can we give to it? We have a cer-
tain understanding of quantum field theory (QFT) on a fixed geometrical 
background; can we understand how to describe a world in which the 
background geometry, space-time itself, is quantum mechanical?

The second question is how to build a diffeomorphism invariant QFT. 
This is, in a sense, the mathematical translation of the first question. 

“To illustrate the physical need of a diffeomorphism in-
variant quantum field theory, consider the following obser-
vations. Space-time geometry is dynamical, and thus rather 
similar to physical fields—indeed, space-time geometry is 
the gravitational field; but we can also turn this observation 
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around and notice that the dynamics of the gravitational 
field is profoundly peculiar—indeed, the gravitational field 
is space-time geometry. In fact, this dynamics cannot be 
captured, as other physical fields, by techniques that rely 
on the existence of a fixed background space-time. More 
precisely, as soon as we include the gravitational dynamics 
into any field theory, we are forced to an interpretative as 
well as a mathematical jump: Since the background geom-
etry is itself a dynamical object, spatial and temporal local-
ization cannot be defined with respect to non-dynamical 
background structures. Localization can only be defined 
with respect to dynamical entities. It seems that this “rela-
tional” view of space-time is the basic physical idea where-
by general relativity has contributed to our understanding 
of the natural world. In the mathematical formulation of the 
theory, this physical idea is realized by a gauge principle, 
which is invariant under diffeomorphism. To fully incorpo-
rate diffeomorphism invariance into quantum field theory, 
therefore, seems to require that we abandon local quantum 
field theory, in which physical operators are labeled by re-
gions of a metric manifold, in favor of a diffeomorphism 
invariant quantum field theory, in which physical operators 
are diffeomorphism invariant objects. Therefore, the defi-
nition and the construction of a nontrivial diffeomorphism 
invariant quantum field theory is at present one of the most 
fascinating problem, and in our opinion it is very important 
in order to be able to clarify the relationship between phys-
ical intuition and mathematical conceptualization” (Rovelli 
1995, 6530–31).

6. Merits and Limits of the Kantian Notion of “Synthetic a priori” 

From the previous discussion, it should now be fairly evident that 
Kant’s conception of intuition is somewhat problematic, and that even 
when we try to replace the neo-empiricist’s reductive and fundamentally 
incorrect interpretation, with a more balanced, revised interpretation of 
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these same difficulties (which we have sought to enumerate briefly here), 
the inadequacy and ambiguities of such conception are still plain to see. 
The main problem lies at the heart of the Kantian system and Kant’s way 
of reasoning which prevent him from coherently develop his system. As 
Jules Vuillemin wrote, the main difficulty with Kantian lies in his notion 
of intuition. He goes on to say that

“Contrary to what asserted by the axioms (in the Tran-
scendental Aesthetic), according to which “the representa-
tion of space is intuitive” [or similarly, “geometry proceeds 
synthetically, that is to say, by sensual intuition”], intuition 
does not necessarily come into consideration in geometri-
cal proofs, nor does it correspond to the intrinsic meaning 
of the axioms...(Vuillemin 1994, 351).

The other fundamental question that Kant considered, and which in 
his reasoning is inseparable from that concerning the role of intuition, is 
to know if and how synthetic a priori judgments are possible, and more 
particularly, how they are possible in mathematics and theoretical phys-
ics. We know the answer putted forward by neo-empiricism and logicism, 
which found the question herself to be devoid of sense. Firstly, in math-
ematics, because all mathematical concepts can be reduced to purely 
logical notions (this is notably the point of view of Frege and Russell), 
thus rendering all inner intuitions and synthetic judgments unnecessary. 
Secondly, in physics, because of the empirical nature of its concepts, 
which contradict the supposed a priori nature of the notions of space 
and time. However, it seems rather clear that this interpretation of Kant, 
and this conception of modern mathematics and physics are essentially 
wrong. For more convincing evidence of this, we should look at the 
development of mathematical logic with Zermelo-Frankel’s and Gödel’s 
theorems, as well as at the developments occurred in the second half 
of last century in the fundamental domains of mathematics such as dif-
ferential geometry, algebraic and differential topology and the theory 
of dynamical systems, etc. The same may be said for developments in 
theoretical physics, notably with general relativity, gauge theory and 
topological quantum field theories. 
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The question raised by Kant is therefore relevant, but for it to be well-
founded, we must improve the conception of what is meant by a priori 
and substantially modify the status of intuition. We have to realize that 
the possibility of synthetic a priori judgments in mathematics does not 
necessarily require that knowledge’ process be submitted to the effects 
of inner subjectivity, since intuition or imaginative thought coupled with 
concepts could also serves to that purpose. 

This was the solution proposed by Poincaré in his analysis of the for-
mation of the notion of geometric space and the role of the concept of 
group in the constitution of geometry. He showed that the notion of 
space couldn’t be formulated on the basis of simple spatial sensations, 
since the latter do not share the same properties which characterize 
abstract geometrical objects, notably their properties of homogeneity, 
isotropy and infinitude. Moreover, he stressed the fact that the concept 
of group of transformations (Poincaré refers to continuous Lie groups), 
which is of fundamental importance in the development of geometry, 
is a fundamental concept of our understanding of space, which enables 
us to reconstruct the whole mathematical structure of a certain type of 
geometry. For example, the group of Euclidean movements is all what 
we need in order to give a complete definition of Euclidean geometry. 
Moreover, geometric space—whether this be Euclidean or non-Euclid-
ean—, instead of being a pure form of our sensual intuition, or even 
a form of transcendental subjectivity, is rather a mathematical object 
which is obtained from the action of a certain group on some “primitive” 
space, that is to say, a space still lacking of all mathematical structures 
it might bear: metric, differentiable, algebraic, and topological. For Poin-
caré, nonetheless, the concept of group is fundamental for our under-
standing of the inner structures of physics, and it is also a profound 
tool of our intuition of space, in the mathematical and creative sense of 
the word. However, at the same time, there is a synthetic meaning to be 
found in the concept of group, the expression of which concerns less 
the way in which it fits into the mathematical reasoning, or the internal 
development of its formal contents, than to the fact that it make pos-
sible: (a) To generate new spaces, and hence new mathematical beings 
which can be defined within these spaces; (b) To deduce, by means of 
either geometrical symmetries (e.g. spatial-temporal symmetries as is 



Kairos. Journal of Philosophy & Science 22, 2019
Center for the Philosophy of Sciences of Lisbon University

The Role of Intuition and Formal Thinking

36

the case for general relativity), or internal symmetries related to the 
phase in quantum mechanics (rotations, spins, non-commutative oper-
ations, duality), which have been found to be associated to the new 
spaces, certain fundamental and dynamical properties of physical phe-
nomena. This deduction is neither empirical nor logical in nature; it is 
rather, in some way, constitutive of phenomena. This fact considerably 
widens our notions of “synthetics a priori” and intuition in physics and 
mathematics.

We think that it is still conceivable to speak about the transcendental 
character of mathematical physical theories, provided that we abandon 
the two following Kantian axioms: (1) Space and time no longer belong 
to the realm of specific or autonomous intuition, (2) The synthesis of 
the unity of apperception (Aperzeption) is not necessarily based on an 
a priori form; instead we have the geometrical structures and the theo-
retical models that allows for some objectivity of physics and of natural 
phenomena.

In the light of the previous considerations and for some important rea-
sons tied up with some developments in mathematics and physics in the 
19th and 20th centuries, we suggest reinterpreting Kant’s transcenden-
tal concepts and appraising their value in a limited and “local” manner. 
We should firstly consider that in Kant’s time, Euclidean geometry and 
Newtonian physics occupied a dominant position. Actually Kant built his 
philosophical system from these two theories, considered by him mod-
els of scientific rationality and objective knowledge. For Kant, Euclidean 
geometry was to be taken as an unquestionable fact, for two reasons: 
(1) Firstly, because our spatial intuition unfolds within the Euclidean 
geometric scheme, (2) Secondly, because our usual space is physically 
Euclidean, and can, therefore, be described by Newtonian physics. 

We should be very careful about these two postulates, which Kant 
considered as self-evident; if they are “true” they are only partially and/
or locally true. It seem to us that, if, on the one hand, some general 
ideas—most notably the ones which asserts that “geometry is a science 
which determines the properties of space in a synthetic, although a pri-
ori manner (...) and that only this assumption allows to understand the 
possibility of geometry as a synthetic a priori knowledge”—bear some 
validity and importance for the current research in mathematics and 
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physics, on the other hand, the specific contents of these ideas appear 
somehow obscure and wrong.

A few more comments on this subject are in order. The axiomatic move-
ment, and in particular the work of Hilbert and others on the foundations 
of geometry and arithmetic, have helped to show the importance of the 
distinction between mathematical space and physical space. The laws 
governing the former are considered to be the necessary consequence 
of a small number of axioms to which we have from the outset ascribed 
the status of free logical statements. And any theoretical domain, belong-
ing to mathematics or to mathematical physics is considered as a for-
mal system of abstract objects, which are mathematically well-defined 
but physically undetermined, and which, as constitutive elements, will 
be part of the theoretical re-construction of the real world. Moreover, 
what is more significant for us, and what H. Weyl particularly stressed, 
is that the philosophical interpretations, after Kant’s conception, of the 
significance and pertinence of the synthetic a priori judgments in sci-
ence, have, over time, evolved in two different directions. On the one 
hand, there are non-empirical laws of “essences” (Wesengesetze) that 
describe the manner in which the levels and contents of consciousness 
develop in relation to one another, although they do not involve factual 
propositions. Husserl developed this point of view as part of his phe-
nomenological investigation, where the notions of a priori and intuition 
are more fruitful than they have ever been in the Kantian system. On the 
other hand, there are principles of a conceptual construction whatever 
it can be (in mathematics or theoretical physics), which, according to 
the Poincaré’s point of view, rests on some theoretical assumptions or 
(semantic) conventions. 

Within this framework, we would like to add few remarks in order to 
better elucidate the phenomenological point of view of Husserl and Weyl. 
For the comprehension of Husserl’s conception one central aspect con-
cerns the meaning that we must ascribe to what he called the “identity of 
thing” and its essential property, namely the continuity (see particularly 
Thing and Space…). It is a matter of distinguishing between phenomeno-
logical spatial continuity and mathematical spatial continuity (which is 
ideally hypothesized and scientifically determined), and also between the 
factual identity (sachlich Identität) and its objective identity. Husserl had 
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made the distinction, with regard to the characterization of the identity 
of the empirical things, between its “actual changes” and its “possible 
changes”. 

This distinction implies two profoundly different conceptions of conti-
nuity. According to one, continuity is of phenomenal nature and serves 
to determine the totality of the actual changes of the appearance of an 
object; these moments are held together in the consciousness of imme-
diately immanent unity and occur contemporaneously with the act(s) 
of perception. According to the other, continuity, wherein the infinite 
is permitted to intervene into the kind of possible perceptions, cannot 
be enclosed within the limits of an immediately given and ever-similar 
unity. The invariant unity of the object could eventually be given, but in 
an altogether different manner and namely by an a priori mathematically 
defined process. This difference, which Husserl points out on more than 
one occasion, must be understood in relation to his discussion of the 
concept of space as a continuum of real phenomena—“filled” in part by 
the ostensive and physical properties of body-surfaces present herein, 
and partly by the sense qualities (qualia) of these same body-surfaces—
and space as a continuum defined in terms of formal category: the “form” 
of the Euclidean manifold or of any n-dimensional manifold, be it Euclid-
ean or not. This last type of continuity is in fact inseparable from the 
mathematical rigorous concept of infinity. 

Relying partly open this Husserl’s view, Weyl has proposed the twofold 
following thesis (see Das Kontinuum, 1918). In the first place, he asserts 
that it is impossible to found the intuitive (phenomenal) continuum on 
the mathematical continuum, and that, in turn, mathematics is not based 
on the intuitive continuum, but rather on the category of natural num-
bers. In the second place, he maintains that the two kinds of continua 
are essentially different with respect to their ontological properties, in 
the sense that it seems problematic, for example, to build a pure theory 
of time starting with the concept of numbers. In fact, this leads to the 
idea that an autonomous theory of the continuum is conceivable inde-
pendently from number theory or an arithmetical background. The fact 
that the only scientifically viable theory of continuum is one that rests 
on the mathematical concept of real numbers, doesn’t exclude: (i) First, 
that one can mathematically distinguish and construct several possi-



Kairos. Journal of Philosophy & Science 22, 2019
Center for the Philosophy of Sciences of Lisbon University

Luciano Boi

39

ble models of the continuum that, though not necessarily isomorphic, 
can nevertheless be all ideally meaningful and useful for the theoretical 
explanation of the physical world, (ii) Second, the possibility of develop-
ing a truly philosophy of continuity which, instead of exclusively resting 
upon the concept of natural numbers, hence on the discreteness of num-
bers, should try rather to rely on some purely continuous topological 
properties, such as homeomorphism of smooth surfaces and manifolds, 
embedding and immersion of these same surfaces and manifolds, and 
the fundamental equivalence relation of isotopy.7 

For example, consider again two objects A
1
 and A

2
 (or two surfaces S

1
 

and S
2
). To prove that A

1
 and A

2
 are isotopic, by a continuous family of 

embeddings (i.e., a smooth map or motion in Rn which takes A
1
 to A

2
), 

one has to show qualitatively that their corresponding boundary sets or 
subspaces are equivalent circles (in the case of two-dimensional mani-
folds) in Euclidean space R3. At any rate, we think that an enlargement 
of the mathematical concept of continuity be possible, provided however 
that we discard the set-theoretic conception of the existence of an unique 
and absolute mathematical ontology,8 i.e. the platonic world of numbers 

7  For an interesting attempt in this direction, see Thom 1992. 

8  See on this subject the very helpful comments made by G. Longo in 1999. Let me 
quote him in extenso: “In this article we have underlined, initially, the non-uniqueness 
of the intuition of the continuum. Then we have developed an analysis that emphasized 
three levels: the intuition one, the construction principles one, and the proof principles 
one. On the first level, the richness of the world and of points of view from which to ob-
serve it, compatible points of view, non isolated, but built from a dialogue with evolution 
and history, suggest a plurality of intuitive approaches and ground mathematics in our 
relation to the world. In part we find these points of view in the different mathematical 
constructions of the continuum, which constitute the second level. These constructions 
enrich and modify the original intuitions (...). But thanks to Logic there is a third level, 
where the analysis of the proof (...) plays an essential role. Clearly, the incompleteness 
results lay in between the second and the third level, as a precise form of indetermination 
of mathematical constructions by formal theories. (...) In the case of the continuum, the 
mathematical objectivity is also in the richness of interactions of three levels we men-
tioned: intuition, Mathematics, Logic. This interaction is not a vicious circle, but a virtuous 
one, extraordinary example of the dynamicity of our forms of knowledge” (p. 21–22). And 
still more significantly he go on by stating: “We cannot ‘found’ mathematics (...) over a 
mathematical discipline, a logical-mathematical system also made up of mathematical 
‘rules of the game’ (as Wittgenstein says). There cannot be an internal foundation, purely 
formal and mathematical, of Mathematics: the incompleteness theorems are not acci-
dents, they underline the gap between the mathematical principles of proof (...) and the 
rigorous practice of mathematical constructions” (Ibid.). 
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and sets, and we recognize besides: (i) Firstly, the possibility of several 
modes and principles of construction of mathematical beings or objects; 
in other words, the likely existence of several mathematical ontologies, 
(ii) And secondly, the possibility that it can exist a connection between 
different “real” ontologies (for example, physical, biological) and imag-
inary (such as literary, artistic) ontologies and the mathematical ones.

Now let’s return to Poincaré. The conventional principles he introduced 
are not arbitrary or devoid of semantic significance, they are, in some 
sense, constitutive for the science of space; yet in a different manner 
to that Kant or even Husserl proposed. Firstly, it is a matter of a formal 
constitution, in the “qualitative” (structural) and not logical sense of the 
word. We can in fact show that the mathematical conventions Poincaré 
spoke about are essentially non-syntactic and non-pragmatic. According 
to H. Weyl, the properties we ascribe to physical space are both a priori 
and synthetic, and entail a certain type of objective meaning, which don’t 
necessarily require that we assign them a subjective origin, as Kant did. 
On this point, Weyl emphasizes the fact that, according to Riemann’s 
and Einstein’s point of view, one can oppose the Euclidean-Pythagorean 
nature of the metric, the only element which is given in an “absolute” 
manner and which does not participate in the manifest indetermination 
of what occupies a variable place in the spatial-time continuous, to the 
reciprocal orientation of the metric at different points, that is to say, the 
quantitative and qualitative evolution of the metric field (i.e. the gravi-
tational field in general theory of relativity), the latter being contingent 
and dependent upon the presence and distribution of matter.

Thus, the general relativity theory does not, in this sense, completely 
deny the existence of an a priori given entity inherent to the structure of 
the extensive medium of the external world; all that it maintains is that 
the frontier between a priori and a posteriori has, in this case as well in 
the more general scientific and epistemological context, shifted. For Rie-
mann, in addition to the a priori features of the universe, and besides the 
basic nature of the Euclidian-Pythagorean metric, there is the topological 
connectedness, which is primitively given, and notably the number of 
its dimensions being 4—this is obviously the space-time dimension of 
general relativity. Moreover, the quantitative and qualitative evolution of 
the metric field obeys precise natural laws, particularly Einstein’s law of 
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gravity, which is similar to Maxwell’s electromagnetic field. Thus, we can 
make, as suggested by Weyl, another distinction within the a posteriori 
category, between what seems to be necessary, in terms of natural laws, 
and what remains free and contingent, whilst obeying exact principles.

7. The Concept of Space and Its Constitutive Levels: From Kant to 
Riemann and Weyl

Weyl repeatedly stressed that the understanding of the complex rela-
tionships between geometric, physical and perceptual space, is one of the 
most fundamental scientific and philosophical issues of our time. These 
three kinds of space form the constitutive levels (konstitutive Stufen) of 
the general concept of space. Furthermore, Weyl proved two important 
insights. He has shown that geometric space (his prototype R3, or Rn, 
or even any open neighborhood of Rn endowed with its intrinsic geom-
etry) is different from the surrounding Euclidean space E (das extensive 
Medium der Aussenwelt), essentially because it is a mathematical model 
of the concept of space. He has also shown that physical space is a type 
of actual existence (or a deformation) of the geometric space; and that 
we can, in fact, conceive several possible deformations. To this end we 
think, along with Poincaré, that the representative or perceptual space 
too, is a deformed image of the geometric space that obeys primarily 
certain laws of optics, perspective, and physiology. 

Contrarily to Kant and in agreement with Riemann, Weyl maintains that 
it isn’t the geometric space as such, and especially not its axioms, that 
are given a priori. It is rather the space of our immediate experience or 
the surrounding living space that form a sort of amorphous topological 
continuum. This continuum is a primitive datum of our intuition, and we 
actually discover its qualitative nature as soon as we relate it to the per-
ception of objects in the external world. Geometric space, on the other 
hand, can be obtained, according to Weyl, by a process which consists of 
supplying that amorphous continuum with some essential mathematical 
structures that mutually implicate each other: metrical, differentiable, 
algebraic, topological, and so on. 

It was Riemann who first developed an entirely new conception of 
mathematical space on which differential geometry and topology, as well 
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as a large part of modern physics, rests. But given its much more general 
range, especially for the understanding of the connection between the 
mathematical concept of manifold and physical space, it seems useful to 
review briefly some key ideas of the German mathematician.

First, the mathematical concept of manifold (Mannigfaltigkeit) seems 
to be very fundamental. A manifold can be intrinsically defined as any 
(small) part of n-dimensional space Rn endowed with a proper geometric 
(both metrical and topological) structure. Any surface can then be con-
ceived as a two-dimensional space equipped with a set of fundamental 
geometric properties, independently of its specific relationship to the 
surrounding Euclidean space, hence as a genuine mathematical object. 
Similarly, a line will be considered as a one-dimensional manifold, and 
space as a three-dimensional manifold. We can, therefore, safely extend 
our conception of manifolds to higher-number and even infinite dimen-
sions and treat them as autonomous mathematical beings. But not all sur-
faces or manifolds exhibit the same mathematical properties. The study 
of these properties has led to a new fundamental distinction between 
metric (local) and topological (global) properties. As a consequence, it 
became clear for the first time that manifolds that are equivalent in 
terms of their (local) metric properties (e.g. a plane and a cylinder) can 
be altogether different with regard to their (overall) topological proper-
ties. Accordingly, these mathematical objects can be classified on the 
basis of their intrinsic properties and their respective structures. This 
led to the important idea that two manifolds, which are metrically or 
topologically equivalent, belong to what would henceforth be known as 
a same spatial form. The surfaces or n-dimensional manifolds that can 
be continually deformed one into the other, while their metric relations 
remain invariant, are thus called isometric. Those, on the other hand, 
that can be deformed through a bi-continuous global deformation are 
called homeomorphic (topologically equivalent).

The previous implicitly embraces three other fundamental ideas intro-
duced by Riemann and developed notably by Weyl. It is useful to highlight 
their importance here, particularly because this allow for a better under-
standing of the spatial intuition and of our phenomenological space. (i) 
All manifolds can be endowed with several metric structures; from this 
point of view, Euclidean geometry may be treated as one among other 
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possible structures. (ii) Manifolds can be distinguished with respect to 
whether they are continuous or discrete; the first are endowed with a 
metric (differential) structure; the second possess an essentially algebraic 
structure. One important consequence of such a distinction is that we 
can think of different metric forms and differentiable structures for the 
same topological space. (iii) All manifolds can support different kinds of 
structures that are at once metric, differentiable, topological, algebraic, 
etc., and this is what essentially makes their mathematical interest. (iv) 
There is an important distinction to be done, between the boundless-
ness (Unbegrenzheit) and the infinite (Unendlichkeit). While the first is 
a topological property, the second is a metric one. In other words, we 
can very well think of a manifold as being finite and boundless at the 
same time. Let’s take the example of the sphere S2. One can go around 
it an unlimited number of times, but since topologically the sphere is a 
closed space and all its points are mutually identical, we can only trace 
finite movements because we can’t leave the space it encloses without 
breaking its boundary and, no matter where we start our movement we 
will return exactly to our initial point. In short, the sphere is a model of 
a finite and unbounded space.

To conclude, let’s make the following three remarks.

(i) The fact that space is an unbounded three-dimensional manifold 
is an assumption which is required in order to develop our conception 
of the external world, for it is exactly this assumption that enables us 
to complete our perception of the possible positions of objects and fur-
ther to construct a full spatial characterization of these objects. From 
this point of view, the three-dimensionality of space isn’t actually an a 
priori condition of our sensual perception or subjective knowledge. (ii) 
However, mathematically as well as physically, space can be at the same 
time metrically infinite and topologically finite (closed); and also it can 
have more than three dimensions and even, in fact, an infinite number 
of dimensions.9 (iii) The perceptual space is not necessarily Euclidean. 
In fact, for example, the idea that the laws characterizing visual space 

9  For an interesting and detailed discussion of this topic see, for example, R. Penrose, 
“Structure of space-time”, in Battelle Rencontres, C.M. DeWitt & J.A. Wheeler editors, 
W.A. Benjamin, New York, 1968, 121–235.
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were the same as those pertaining to a finite bi-dimensional (i.e. spher-
ical) space has already been formulated towards the end of the 19th 
century. The Scottish philosopher Thomas Reid, among others, while 
examining the geometric properties of the visual field that he believed 
to be spherical, recognized important analogies between the geometry 
of the sphere and the geometric structure of visual space. Accordingly, 
he was led to make the distinction between tactile geometry, which is 
Euclidean, and the geometry of the visual field which follows other laws 
than the Euclidean ones, specifically spherical. Indeed, recent theories 
of perception (see Suppes (1977); Gordon (1997); Boi (2004)) confirm 
the fact that the geometrical structures of perceptual space are more 
complex and essentially different from those which characterize our 
Euclidean surrounding space. 
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