
Kairos. Revista de Filosofia & Ciência 9: 45-72, 2014.
Centro de Filosofia das Ciências da Universidade de Lisboa 45

Logic and Computers.
A Sketch of Their Symbiotic Relationships

Jordi Vallverdú
(Philosophy Department, Universitat Autònoma de Barcelona)

jordi.vallverdu@uab.cat

0. Introduction

It is a well established fact that Logic and Computer Sciences have a long

and close relationship, which has benefited both sides of this symbiotic

relationship. Therefore, this is a case of mutualist symbiosis, a relationship in

which both fields benefit. Nevertheless, and according to the main studies

about this topic, this relationship could looks like as a parasitist or

commensalist one: that is, one field benefits but the other is harmed (in the

first case), or one field benefits, while the other remains unaffected (in the

second one).

Our departure hypothesis is: not only logic has influenced computer

sciences development (a common topic on the historiographical approaches

to computer sciences)
1
, but computer sciences have also changed the logical

thinking and practice. This is a mutualist symbiosis. This second idea, the

impact of computer sciences into logical field, has been overlooked by most of

the researchers who have studied the relationships between both fields. This

symmetric symbiosis reaches from practical to very fundamental aspects of

the relationship.

To be honest, we are not just talking about logic and computer sciences

fields, but also of engineering and mathematics. From a conceptual and a

practical point of view, there are crucial interconnections between all these

1
 Davis 1988, 2000.

mailto:jordi.vallverdu@uab.cat

Logic and Computers. A Sketch of Their Symbiotic Relationships

Kairos. Journal of Philosophy & Science 9: 2014.
Center for the Philosophy of Sciences of Lisbon University 46

disciplines. Logic is a parent discipline of computer science
2
, as well as a

basic constituent of computer science curricula. At the same time, logic has

provided computer sciences with several tools, methods and theories. But

more than a similarity there is also an equivalence relation between programs

and logical formula
3
: a program is a sequence of symbols constructed

according to formal syntactic rules and it has a meaning which is assigned by

an interpretation of the elements of the language. These symbols are called

statements or commands and the intended interpretation is an execution on a

machine rather than an evaluation of a truth value. Its syntax is specified

using formal systems but its semantics is usually informally specified. Then, a

statement in a programming language can be considered a function that

transforms the state of a computation. Going further
4
, we can affirm that there

is no line between software and mathematics. Translation problems between

them are trivial, because they are equivalent. Therefore, by the Church-Turing

Thesis we can establish an identity between Programs, Logics and

Mathematics. There is a common nature between these domains, with

different historical backgrounds and main objectives, but at the end they

speak the same language. Ben-Ari affirms that

a program is not very different from a logical formula. It is a sequence of
symbols which can be parsed according to formal syntactical rules and it
expresses a meaning, in this case a computation, according to the intended
interpretation of the atomic elements and connectives of the language. In
programming, these elements are called statements or commands because the
intended interpretation is machine execution rather than just computation of a
truth value

5
.

According to the Handbook of Logic in Computer Science
6
, there are

several fields in which logic is present into computer science:

 programming language semantics: to make sure that different

implementations of a programming language yield the same results,

programming languages need to have a formal semantics. Logic provides the

tool to develop such semantics.

- type theory, linear logic, categorical theories

 - Lambda calculus, Pi calculus

2
 Thomas, 2000.

3
 Ben-Ari, 1993.

4
 As Klemens, 2006, states.

5
 Ben-Ari, 1993, 244.

6
 Abramsky, Gabbay & Maibaum, 1993.

Jordi Vallverdú

Kairos. Revista de Filosofia & Ciência 9: 2014.
Centro de Filosofia das Ciências da Universidade de Lisboa

47

- specification logics (e.g. dynamic logic, Hoare logic, temporal logic…)

 - Finite model theory, data base theory

 - Term rewriting, unification, logic programming, functional programming

- Automated theorem proving

 Program validation and verification (V&V): it uses temporal logic (finite

state systems can naturally be represented as models for temporal logic;

verifying if a system satisfies some desired property thus amounts to checking

that the formula representing the specification is satisfied by the model

representing the system).

- Process calculi and concurrency theory

 - Modal logic, logics of knowledge.

Logic plays also an important role in very different areas of Computer

Science, like computer architecture (logic gates), software engineering

(specification and verification), programming languages (semantics, logic

programming)
7
, databases (relational algebra and SQL), artificial intelligence

(automatic theorem proving), algorithms (complexity and expressiveness),

and theory of computation (general notions of computability).

This is the reason for which specialists of these disciplines have worked

together or have established working relationships. This is the reason of the

present paper: to show the relationships between computer and logic

research domains and how they have influenced each other.

1. From Logic to Computers

1.1. A little bit of history

In the second half of the nineteenth century a new branch of logic took

shape: mathematical logic. Its aim was to link logic with the ideas of arithmetic

and algebra, in order to make logic accessible to the algebraic techniques of

formula manipulation
8
. Deductive reasoning could be then reduced to

algebraic formulisms. The author who made this possible was George Boole

(1815-1864). By reducing Logic to Algebra, Boole made possible to introduce

7
 At the same time, logic programming provides attractive models for inferential

information flow (Benthem & Martínez, 2007: 54).
8
 Thomas, 2000.

Logic and Computers. A Sketch of Their Symbiotic Relationships

Kairos. Journal of Philosophy & Science 9: 2014.
Center for the Philosophy of Sciences of Lisbon University 48

mathematics into logical thinking through the Boolean Algebra. At a certain

point, Boole realized Leibniz’s conception of an algebra of thought. With only

numbers 0 and 1, Boole built up an entire algebra, turning logic into a fully

symbolic practice which could be computed easily. So easy that its

implementation into a computational binary framework made Boolean circuits

possible. This late idea came from Claude Shannon, whose 1938 master’s

thesis in electrical engineering showed how to apply Boole’s algebra of logic

into electronic switching circuits. Although some of the first computers were

not working on a binary approach, like ENIAC or Harvard’s Marc I (still

decimal), very soon all computers used Boolean algebra implemented into

Boolean circuits.

Between 1890 and 1905, Ernst Schröder wrote his Vorlesungen über die

Algebra der Logik, where developed the ideas of Boole and De Morgan,

including at the same time ideas of C.S. Peirce showing that the

algebraization of logic was possible and with a great impact for the new logic

studies.

By independent ways, the mathematic Charles Babbage (1791-1871) and

his co-researcher Augusta Ada Byron, Countess of Lovelace (1816-52) and a

mastered young mathematician too, developed the Difference Engine, first,

and Analytical Engine, second. To be precise, Ada only collaborated in some

aspects of the second machine: she expanded considerable effort on

developing the first programs for the planned machine and on documenting its

design and logic. In fact, Ada developed a method for calculating a sequence

of Bernoulli numbers with the Analytical Engine, which would have run

correctly whether the Analytical Engine had ever been built. Both machines

were far beyond the capabilities of the technology available at the

time. Nevertheless, as a theoretical concept, the idea of the Analytical Engine

and its logical design are of enormous significance. This is the first realization

that, by mechanical means, it might be possible to program complicated

algorithms. The Analytic Engine had, in principle, all of the important

components (Memory, Processor and Input/Output protocol) that are present

in modern-day computer systems. For this reason Babbage has a strong

claim to be the inventor (even if not the first builder) of the modern computer.

Designed for military purposes (calculating firing maritime ballistic tables), the

Difference Engine was intended to evaluate polynomial functions, using a

mathematical technique called the Method of Differences, on which Babbage

had carried out important work. With later digital computers was possible to

Jordi Vallverdú

Kairos. Revista de Filosofia & Ciência 9: 2014.
Centro de Filosofia das Ciências da Universidade de Lisboa

49

apply propositional calculus to the two voltage levels, arbitrarily assigning the

symbols 0 and 1 to these voltage levels.

With his Begriffschrift (1879), Gottlob Frege pioneered first attempts to put

into symbols natural languages, which were used to make science. He tried to

achieve the old Leibniz’s dream: calculus as rational thinking (with the

characteristica universalis), trying to develop a syntactic proof calculus that

could be as good as mathematical proofs. Unfortunately, the system Frege

eventually developed was shown to be inconsistent. It entails the existence of

a concept R which holds of all and only those extensions that do not contain

themselves. A contradiction known as “Russell’s Paradox” follows.

Very often, Zermelo and Russell discovered the set theoretic paradoxes,

which demolished the main logic proof building. Russell and Whitehead

published between 1910 and 1913 their Principia Mathematica, in which they

re-established the foundations of pure mathematics in logical terms
9
…

something not so useful for practical purposes if we consider the fact that both

authors required 379 pages to justify the truth of ‘1+1=2’ (in the Volume I,

§54.43 and completed in Volume II, §110.643).

The same bad news for idealistic approaches to mathematical entities

were found to Hilbert’s Program about the foundations of mathematics after

Gödel’s ideas on incompleteness. According to him, any logical system

powerful enough to include natural numbers was also necessarily incomplete.

Beyond this idea, Gödel also introduced the fundamental technique of

arithmetization of syntax (‘Gödel-numbering’), which led to the transformation

of kinds of data useful for the purposes of computation
10

. At the same time,

Gödel introduced the first rigorous characterization of computability, in his

definition of the class of the primitive recursive functions.

Alfred Tarski created in 1929 the notion of independent semantics, a very

important idea for the future of logics. The syntactic concepts comprising the

notation for predicates and the rules governing inference forms needed to be

supplemented by appropriate semantic ideas and Tarski was the guy who

created the fundamentals of the semantics of First Order Logic (Robinson,

2000). With these conceptual tools, Tarski provided a rigorous mathematical

concept of an interpretation.

With a deep insight for the work of the future, David Hilbert proposed

stimulant problems which required from enthusiastic mathematicians

9
 Flach, 2005.

10
 Dawson, 2006.

http://www.hti.umich.edu/cgi/t/text/pageviewer-idx?c=umhistmath;cc=umhistmath;rgn=full%20text;idno=AAT3201.0002.001;didno=AAT3201.0002.001;view=pdf;seq=00000126

Logic and Computers. A Sketch of Their Symbiotic Relationships

Kairos. Journal of Philosophy & Science 9: 2014.
Center for the Philosophy of Sciences of Lisbon University 50

generations for its solution. One of the problems, the Entscheidungsproblem,

interested to a young and brilliant mathematician: Alan Turing. In 1936, Turing

wrote a crucial paper, On computable numbers, with an application to the

Entscheidungsproblem, in which he proposed the idea of an universal

machine (the antecedent of the programmable processor). At the same time,

Turing demonstrated that this problem was undecidable for first-order logic.

The infallibility was off the agenda, because no fixed computation procedure

by means of which every definite mathematical assertion could be decided

(as being true or false). In the same year of 1936, Emil Post published a

characterization of computability remarkably similar to that of Turing
11

.

Nevertheless, four years before Turing’s crucial paper, Alonzo Church

introduced lambda calculus, as a new kind formulation of logic (basing the

foundation of mathematics upon functions rather than sets) and a way to go

away from the Russell paradox. Nevertheless, the Kleene-Rosser paradox

showed that the lambda calculus was unable to avoid set-theoretic

paradoxes. Today, lambda calculus is at the heart of functional programming

and has had a big influence in compilations representation as well as in

reasoning representation. The Lambda-definability made possible developing

functional programming (like Lisp), also creating efficient compilers for

functional languages. And related to the computer algebra, mathematical

proofs by computers can be done more efficiently by lambda terms
12

.

Also in 1936, Church realized that lambda calculus could be used to

express every function that could be computed by a machine
13

. Perhaps

Gödel had broken the gold dream of logical perfection but people like Church

still worked on to developing more powerful logical systems. From 1936 to

1938, Turing had studied with Church at Princeton University. Some years

later, the mathematician John von Neumann, developed his idea of a

computer architecture after the ideas of Turing, leading to the so-called “von

Neumann architecture”, that has been implemented in most of actual

computers
14

.

But not only Church established a strong relationship between logic and

computability. In 1960 Curry first noticed what a bit later was called the Curry-

11

 van Benthem et al 2006.
12

 Barendregt, 1997.
13

 Wadler, 2000.
14

 There is also the Harvard architecture are several middle or combined options, like
the Modified Harvard architecture. In fact, most modern computers instead implement
a modified Harvard architecture.

Jordi Vallverdú

Kairos. Revista de Filosofia & Ciência 9: 2014.
Centro de Filosofia das Ciências da Universidade de Lisboa

51

Howard Isomorphism. The fundamental ideas of Curry-Howard are that proofs

are programs, that formulas are types, that proof rules are type checking rules

and that proof simplification is operational semantics. At the end, that the

ideas and observations about logic were ideas and observations about

programming languages.

Nevertheless, we must go back to the year 1954. In that date, Martin Davis

carried out one of the first computational logical experiments: he programmed

and runned the Presburger’s Decision Procedure for the first order theory of

integer addition
15

. He proved that the sum of two even numbers was itself an

even number. A year later, in 1955, Evert Beth and Jaakko Hintikka

(independently) described a version of the basic proof procedure, being a

computationally powerful technique.

Dag Prawitz in 1960 made another important (re)discovery: the resolution

rule, described something obscurely thirty years before by Herbrand in his

Ph.D. Thesis and definitively coined in the actual form by John Alan Robinson

in 1963. The process of its creation consisted on combining a known

inference rule with unification. Ironically, the new mechanical efficiency

brought also a cognitive opacity. According to Robinson, resolution was more

machine-oriented than human-oriented
16

. Although resolution was to be a

great contribution the paper in which it was described remained unpublished

in a reviewer’s desk for a year. Artificial intelligence and formal logic

converged into a main research field, although the MIT view was being build

(as we’ll see in the next section).

This same critical process led to Larry Wos and George Robinson (at

Argonne) to the development of a new rule, which they called paramodulation.

This rule was implemented into several famous Argonne theorem provers,

being perhaps one of the most famous William W. McCune’s OTTER (see

section 2.3). Theorem proving was one of the first field in which symbolic (as

opposed to numeric) computation was automated.

All these results made possible a functional automated deduction

technology, useful for several fields of academy as well as of industry.

15

 Robinson, 2000, 8.
16

 MacKenzie, 2004, 79.

Logic and Computers. A Sketch of Their Symbiotic Relationships

Kairos. Journal of Philosophy & Science 9: 2014.
Center for the Philosophy of Sciences of Lisbon University 52

1.2. The summer of the heuristic approach and other things

As Robinson (2000) remarks, two very important meetings for the history

of computational logic took place in the 1950s:

Darmouth Conference (1956): this conference, championed by John

McCarthy, gave birth to the field of AI. The crucial results of the common

research of Herbert Simon (an economist) and Allen Newell (a

mathematician) were presented there. They created a heuristic theorem-

proving program, using the computer JOHNNIAC at RAND Corporation. With

their computer program Logic Theorist, they solved automatically thirty-eight

of the first fifty-two theorems in chapter 2 of the Principia Mathematica. Simon

tell us that after informing Russell upon these results, he received an ironic

answer: “if we'd told him this earlier, he and Whitehead could have saved ten

years of their lives. He seemed amused and, I think, pleased”
17

. Logic

Theorist can be considered like the first Expert System (ES).

Cornell Summer School in Logic (1957): Plenty of researchers attended

this course; among them, Martin Davis, Hilary Putnam, Paul Gilmore and

Herbert Gelernter. As Robinson (2000) recalls, Gelernter (a heuristic

enthusiast from IBM) provoked Abraham Robinson to give a lecture using

these methods and focusing on proof seeking. Gelernter’s lecture influenced

Gilmore, Davis and Putnam, researchers that would write their Herbrand-

based proof procedure programs.

Without developing a long history about AI debates, I consider necessary

to expose, at least briefly, some historical notes on its basic schools. There

were two basic AI approaches
18

:

a) The MIT View: it considered AI as a heuristic, procedural, associative

way of producing artificial-generated knowledge. Marvin Minsky and Seymour

Papert were members of this approach. For these authors, formal logic was

inadequate for the representation of knowledge required by any general

approach to AI. They considered such a view as too static and rigid, preferring

a procedural approach.

b) The Edinburgh-Stanford View: on the other hand, we have the logic

view, championed by John McCarthy, who considered that AI knowledge

could be mechanized because it could be axiomatized declaratively using

17

 Stewart and Simon, 1994.
18

 Robinson, 2000.

Jordi Vallverdú

Kairos. Revista de Filosofia & Ciência 9: 2014.
Centro de Filosofia das Ciências da Universidade de Lisboa

53

First Order Logic. They considered computational logic as the only way to

achieve an Artificial Intelligence.

To be honest, both approaches were highly symbolic had more things in

common than differences. In the middle of an AI’s civil war, they were also

called neats (logicists) and scruffies (proceduralists). It was only later that two

real AI confronted approaches appeared, which can be summarized as top

down and bottom up approaches:

i. Top Down: symbol system hypothesis (Douglas Lenat, Herbert Simon).

The top down approach constitutes the classical model. It works with symbol

systems, which represent entities in the world. Following to Brooks (1990, 4):

“The symbol system hypothesis, states that intelligence operates on a system

of symbols. The implicit idea is that perception and motor interfaces are sets

of symbols on which the central intelligence system operates. Thus, the

central system, or reasoning engine, operates in a domain independent way

on the symbols”. SHRDLU (Winograd), Cyc (Douglas Lenat) or expert

systems are examples of it.

ii. Bottom Up: physical grounding hypothesis (situated activity, situated

embodiment, connexionism). On the other side, the bottom up approach

(championed by Rodney Brooks), is based on the physical grounding

hypothesis. Here, the system is connected to the world via a set of sensors

and the engine extracts all its knowledge from these physical sensors. Brooks

talks about “intelligence without representation”: complex intelligent systems

will emerge as a result of complex interactive and independent machines.

In this sense, the MIT View and the Edinburgh-Stanford View both

belonged to the top down approach. But let me continue with the conceptual

analysis of computational logic.

1.3. About programming languages and several logics

During the 20th century logicians, mathematicians, philosophers and

computer scientists studied a wide range of alternative formalisms designed

for specific applications which do not appear to be easily handled by classical

logic
19

: intuitionist, temporal, etc. Temporal logic, for example, is widely used

19

 Galton, 1992.

Logic and Computers. A Sketch of Their Symbiotic Relationships

Kairos. Journal of Philosophy & Science 9: 2014.
Center for the Philosophy of Sciences of Lisbon University 54

for automated verification of semiconductor designs, as a specification

language for design
20

.

And as Wadler (2000) remarks, in 1969, W. A. Howard put together the

results of Curry and Prawitz, and wrote down the correspondence between

natural deduction and lambda calculus Moreover, Wadler also states that the

“Curry-Howard correspondence led logicians and computer scientists to

develop a cornucopia of new logics based on the correspondence between

proofs and programs.” This implied the common work between logicians and

computer scientists.

Not all philosophical efforts towards better reasoning were developed

under deductive modes of reasoning: the work of Mill or Peirce in non-

deductive modes of reasoning, like induction or abduction, influenced also the

field of Artificial Intelligence
21

. Traditional logic was not only flawed, it lacked

soundness and completeness: non-monotonic logics appeared as the way to

develop new powerful logics. But as Turner (1985) notes, while non-standard

logics were investigated by philosophers and logicians since the 1930's at

least, it was only in the late 1960's that McCarthy and others began to exploit

those resources, in AI. And as Ben-Ari (1993) notes, the special demands of

computer science generated interest in non-standard logical systems (like

modal, temporal, many-valued, epistemic, intuitionistic, and other recent

systems), leading to some highly applications of logic to software: the

specification and verification of programs. For example, logic for action

requires from certain previous, contextual and operational knowledge that

must be used in order to achieve that action (Mishra, Aloimonos, Fermuller,

2009).

Although several authors worked on the relationships between the logics

logics of knowledge and belief (as did Rudolf Carnap, Jerzy Los, Arthur Prior,

Nicholas Rescher), it was G. H. von Wright who recognized that our discourse

concerning knowledge and belief exhibits systematic features that admit of an

axiomatic-deductive treatment
22

. He wrote a seminal work on epistemic logic

(1951, An Essay on Modal Logic), whose ideas were extended by Jaakko

Hintikka in Knowledge and Belief: An Introduction to the Logic of the Two

Notions (1962). Hintikka’s book was a first attempt to combine efficiently

knowledge and action (McCarthy & Hayes, 1969). This enabled the existence

20

 Halpern et al., 2001.
21

 van Benthem, 2000.
22

 Hendricks & Symons, 2009.

Jordi Vallverdú

Kairos. Revista de Filosofia & Ciência 9: 2014.
Centro de Filosofia das Ciências da Universidade de Lisboa

55

of a logic based on possible worlds (formalized by Kripke structures). Multi-

agent systems can define a system as a non-static entity that changes over

time. According to van Benthem & Martínez
23

, Hintikka opened the possibility

of working formally with a crucial idea: information. Information could then be

considered as an information flow from states information to agents

information (who have beliefs, knowledge or other informational situations).

Perhaps it was not the perfect knight for logic, but better married than alone.

Independently of Hintikka and belonging to a different research field,

economy, Robert Aumann developed in the 1970’s similar ideas. Aumann

gave a mathematical formulation in a set-theoretical framework to the idea of

common knowledge.

 Later, in the 1980s and 1990s, epistemic logicians focused on the logical

properties of systems containing groups of knowers and later still on the

epistemic features of the so-called "multi-modal" contexts
24

. It was in the

1980’s that the notion of knowledge from epistemic logic deeply influenced

computer science. TARK conferences (and later LOFT conferences) were an

example of this new interdisciplinary approach. After considering the notions

of inference, observation, introspection and self-correction agent (interactive)

powers, logic was closer to the idea of behavioral equilibrium in groups of

agents. This enabled a broad range of theories about it: logical dynamics (van

Benthem), information dynamics in computer science (Abramsky), interactive

epistemology or mathematical learning theory (Kelly)
25

. Since then logical

thinking may be considered as an interaction of its dynamical and social

properties. As van Benthem (2007: 25) notes: “information is a pervasive

aspect of reality, prior to cognitive action”, that is, information is more than

(formal) knowledge. Substructural logics arose (as nonclassical logics) in

response to problems in foundations of mathematics and logic, theoretical

computer science, mathematical linguistics, and category theory (Dosenn and

Schroder-Heister, 1993). Here are some of those logics: (1) lambek calculus

(1950’s), (2) linear logic (Girar 1980’s), (3) fuzzy and multivariate logics, (4)

relevance logics (Lukasiewickz), and (5) BCK logic.

23

 Benthem & Martínez, 2007.
24

 Hendricks & Symons, 2009.
25

 See van Ditmarsch, van der Hoek & Kooi, 2008 for an analysis on Dynamic
Epistemic Logic.

http://en.wikipedia.org/wiki/Set_theory

Logic and Computers. A Sketch of Their Symbiotic Relationships

Kairos. Journal of Philosophy & Science 9: 2014.
Center for the Philosophy of Sciences of Lisbon University 56

As a resume of the explained data, we can conclude that:

Author Development Formalization of

Gentzen Natural deduction Proofs

Church Lambda-calculus Programs

As noted by Wadler (2000), lambda calculus, both typed and untyped,

inspired several programming languages such as: LISP, 1960: J. McCarthy;

Iswim, 1966: Peter Landin; Scheme (Lisp dialect), 1975: Guy Steele (one of

the three future programmers of JAVA) and Gerald Sussman; ML

(‘metalenguage’), 1979: Milner, Gordon, Wadsworth, later ‘Standard ML’, the

base of primordial LCF theorem prover, wich later also inspired HOL and

Isabelle theorem provers; Miranda, 1986: David Turner; Haskell, 1987:

Hudak, Peyton Jones, Wadler et al, and, finally, O’Caml, 1996: Xavier Leroy.

Keith Clark, Alain Colmerauer, Pat Hayes, Robert Kowalski, Alan

Robinson, Philippe Roussel, etc. deserve a lot of credit for promoting the

concept of logic programming and helping to build the logic programming

community. Currently, most programming is not done in logic programming

but in imperative programming language (like Pascal, C, etc.). Other

languages, like Prolog, for Programming in Logic, were developed from a

syntactic-arithmetic perspective, rather than semantic, in order to program not

with a set of instructions but directly with formal arithmetic logic as a total

solution
26

. According to Ben-Ari
27

 Prolog was the first logic programming

language and extensive implementation efforts transformed this language into

a practical tool for software development. The history of Prolog is, perhaps,

the history of the birth of logic programming. All started when Alain

Colmerauer was working in 1963 on parsing and syntactic analysis. As

Wadler (2000) remarks, at the end of this decade, and working on automatic

translation, he tried to make automatic deduction from texts instead of just

parsing them. Colmerauer studied the resolution principle and contacted Bob

Kowalski, who worked at Edinbourgh. Kowalski and D. Kuehner had recently

devised a refinement of resolution (SL-resolution), which permitted, as Wadler

(2000) also states, linear deductions with great efficiency and made possible

the Edinburg Structure-Sharing Linear Resolution Theorem Prover. The

meeting and sharing of ideas between Colmerauer and Kowalski created the

26

 Kowalski, 1982.
27

 Ben-Ari, 181.

Jordi Vallverdú

Kairos. Revista de Filosofia & Ciência 9: 2014.
Centro de Filosofia das Ciências da Universidade de Lisboa

57

language Prolog. Then the Marseille-Edinburg Prolog implementation started,

offering an immediately applicable, available and attractive way to do logic

programming. Prolog is expressive enough to execute non-procedural

programs, and yet also contains enough ‘compromises’ with the real world to

allow the execution of many programs efficiently
28

.

In 1970 Robinson (2000) suggested that the new field should be called

computational logic, and in December 1971 Bernard Meltzer convinced his

university to allow him to rename his research department as “Department of

Computational Logic”. The Horn clause version of resolution, as Robinson

(2000: 12) declares, “could be used to represent knowledge declaratively in a

form that (…) could then be run procedurally on the computer. Knowledge

was both declarative and procedural at once.” This led to sequential logical

programming, an approach that had also LISP as the crucial reference. By its

competence and elegance, PROLOG was used as the first Kernel Language

(KL0) of the Japanese Fifth Generation Project (FGP) of Computing Systems

(1979-1981). The FGP dominated the mainstream in the 1980’s on

computational logic (Robinson, 2000). With the increase of complex tasks

assigned to a single CPU (for example in multiprogramming operating

systems and real-time systems), was developed the concurrent computation

and the concurrent logic programming. In that case, the multiple tasks can be

executed sharing a single CPU rather than being executed in true parallelism

on multiple CPUs. But the problem with parallel and concurrent computation

is the difficulty of constructing and verifying algorithms that can benefit from

parallelism, and of expressing these algorithms conveniently in a

programming language. Nevertheless, logic programs have a natural

interpretation as concurrent computations because do not express algorithms

procedurally but instead express them declaratively where the formulas has

no inherent ordering. Concurrent logic programming languages specify

concurrent procedural interpretations for Horn clause programs, just as Prolog

specifics a sequential procedural interpretation for the clauses. As Ben-Ari,

1993 remarks, an example of this case of concurrent logic programming

language is GHC (Guarded Horn Clauses). A GHC program consists of a set

of guarded clauses. A guarded clause is like an ordinary clause except that

the literals in the body may be preceded by a sequence of literals called

guards. They are separated from the body literals by a vertical bar rather than

by a comma:

28

 Ben Ari, 1993, 8.

Logic and Computers. A Sketch of Their Symbiotic Relationships

Kairos. Journal of Philosophy & Science 9: 2014.
Center for the Philosophy of Sciences of Lisbon University 58

A :- G1,…,Gk B1,…, Bn.

There is another kind of logic, the Constraint logic programming (CLP)

which combines the flexibility and ease of declarative programming in logic

with the power of search techniques that were developed during research on

AI. According to van Roy & Seif, there are almost 30 useful programming

paradigms
29

. Each paradigm supports a set of concepts that makes it the best

for a certain kind of problem. One programming language can support

different paradigms (defined as a ‘set of programming concepts’). Perhaps we

can classify them under two main programming paradigms, declarative and

imperative, as I resume it in this box:

Programming

Paradigms

Declarative Imperative

Functional Logical Imperative/Procedural

Evaluation of

mathematical

functions avoiding

state and mutable

data

Use of

mathematical

logic for

computer

programming

Statements that

change a program

state.

Languages APL, FP, Lisp,

Erlang, Haskell, ML,

F#, Scheme

PROLOG FORTRAN, ALGOL,

COBOL, Java, C, C++

As it is usual in scientific and technical opposite controversies, both

approaches have interesting benefits and annoying side problems. One of the

most famous approaches was exemplified by Edsger Dijkstra in this paper

“Go To Statement Considered Harmful”
30

. Dijkstra argued against the abusive

use of imperative constructs and considered the command ‘GO TO’ as the

archetypical kind of such an abuse IN his own words: “For a number of years I

have been familiar with the observation that the quality of programmers is a

decreasing function of the density of go to statements in the programs they

produce. More recently I discovered why the use of the go to statement has

such disastrous effects, and I became convinced that the go to statement

29

 Van Roy & Seif, 2004. Van Roy also offers a very useful visual chart of
programming paradigms; see here
http://www.info.ucl.ac.be/~pvr/paradigmsDIAGRAMeng.pdf
30

 Letter to Communications of the ACM (CACM), vol. 11 no. 3, March 1968,147-148.

http://www.info.ucl.ac.be/~pvr/paradigmsDIAGRAMeng.pdf

Jordi Vallverdú

Kairos. Revista de Filosofia & Ciência 9: 2014.
Centro de Filosofia das Ciências da Universidade de Lisboa

59

should be abolished from all "higher level" programming languages (…) The

unbridled use of the go to statement has an immediate consequence that it

becomes terribly hard to find a meaningful set of coordinates in which to

describe the process progress. (…) The go to statement as it stands is just

too primitive; it is too much an invitation to make a mess of one's program”.

Structured programming, according to Dijkstra, could not solve these

problematic statements. At the same time, there was an attempt to develop a

new managerial approach to production programming
31

. Perhaps imperative

languages are not the perfect choice but it is undoubtable that they are

dominating several computing fields. As a middle point position, Bob Kowalski

proposed the equation ALGORITHM = LOGIC + CONTROL. A new paradigm

was in the agenda, with a basic necessary characteristic: to maintain a strict

separation of the declarative from the imperative aspects. From this

perspective, algorithms consist of a problem description (logic) along with a

strategy to carry out computations of these descriptions (control).

First-order logic has also been used at the heart of a lot of database

systems, like its syntactic variants ‘structured query language’ (SQL) or

‘query-by-example’ (QBE). First-order logic has also been implemented into

database using relational algebra, and at the same time making possible to

scalate correctly the large databases
32

.

The last of our covered topics in this section this section is information. On

the early 1980’s, Jon Barwise and John Perry took seriously the idea of study

the concept of ‘information’ from a logical perspective. They set up ‘situation

semantics’ and founded, in 1983 at Stanford University, the Center for the

Study of Language and Information (CSLI). It was a place of great interaction

among philosophers, mathematicians and computer scientists. On the other

hand, not only the American researchers were involved into this new analysis,

European colleagues were also working on natural language semantics (and

the informational turn), as Peter van Emde did, who was a pioneer on the

study of the parallels between natural and programming languages. By 1986

it was created the Institute for Language, Logic & Information (ILLI, but

originally known in Dutch as ITLI, the Instituut voor Taal, Logica en

Informatie), later renamed as ILLC (1991, Institute for Logic, Language and

Computation). In 1990, the European Association for Logic, Language and

Information (FoLLI) created the annual ESSLLI summer schools, with a great

31

 MacKenzie, 2001: 39.
32

 Halpern et al, 2001.

Logic and Computers. A Sketch of Their Symbiotic Relationships

Kairos. Journal of Philosophy & Science 9: 2014.
Center for the Philosophy of Sciences of Lisbon University 60

orientation toward mixed research fields. Alexandru Baltag, focusing on

information aspects, and a researcher at Oxford University, explains in his

website
33

 that Logic is currently evolving into a new interdisciplinary field,

devoted to studying 'qualitative informational interactions'; i.e. its sources,

flows, gatherings, as well as processing, combining and upgrading (or more

generally the 'dynamics') of qualitative Information. In sum, logic naturally

underlies most of theoretical computer science, but it also has the potential of

acting as a unifying force for many academic disciplines around the concept

of Qualitative Informational Interaction.

1.4. New Journals and the Institutionalization of the Field

In 1984 the first issue of The Journal of Logic Programming appeared

(Robinson, 2000). Several publications on the field appeared across the next

years, like: Journal of Logic and Computation (1990)
34

, Journal of Functional

and Logic Programming (1995)
35

, Journal of Multiple-Valued Logic and Soft

Computing (1996)
36

, or Transactions on Computational Logic (TOCL, 2000)
37

.

The increasingly growth of journals in the field denotes a strengthening of this

research area and the existence, for the first time, of a critical mass of

specialists on the field. A huge literature was also being written. For example,

Michael Poe et al compiled in 1984 a comprehensive bibliography on Prolog

programming with more than 700 entries. In a few short years, the concepts,

methods, and topics of computer scientists changed and were shaped to

attend the requirements of professionalization and institutionalization.

1.5. Programming robots

Computational logic has also provided solutions to engineering

developments on robotics. Flux high-level programming language, for

example, enables robots with an internal model of their environment. With an

implementation of fluent calculus, this language provides a solution to the

33

 http://www.comlab.ox.ac.uk/people/Alexandru.Baltag/ accessed in March 4rth, 2014.
34

 http://logcom.oxfordjournals.org/, accessed in March 4rth, 2014.
35

 http://scholar.lib.vt.edu/ejournals/JFLP/, accessed in March 4rth, 2014.
36

 http://www.oldcitypublishing.com/MVLSC/MVLSC.html, accessed in March 4rth,
2014.
37

 http://tocl.acm.org/, accessed in March 4rth, 2014.

http://www.comlab.ox.ac.uk/people/Alexandru.Baltag/
http://logcom.oxfordjournals.org/
http://scholar.lib.vt.edu/ejournals/JFLP/
http://www.oldcitypublishing.com/MVLSC/MVLSC.html
http://tocl.acm.org/

Jordi Vallverdú

Kairos. Revista de Filosofia & Ciência 9: 2014.
Centro de Filosofia das Ciências da Universidade de Lisboa

61

classic frame problem, using the concept of state update axioms This allow us

to address several aspects of reasoning about actions like ramifications,

qualifications, nondeterministic actions, concurrent actions, continuous

change or noise inputs.

2. From Computers to Logic

In Thomason it is explained
38

 that the AI authors have made real

contributions to philosophical logic, and that they also have draw heavily on

past work in logic and philosophy. Computer science is not a passive receiver

of logic, on the contrary: it is a direct arrow onto logic development. John

McCarthy challenged philosophers to contribute to AI by surveying a number

of problems of interest to both fields. This was not only a possible way of

improving AI, but it was also an opportunity to obtain a new and significant

philosophical advancement. From the perspective of AI, there were, said

McCarthy, several philosophical problems, like the importance of common

sense, the roles of logic, non-monotonic reasoning, free will, knowledge and

belief, reasoning about context, and some more general epistemological

concerns.

Van Benthem
39

 states that computer sciences are changing academia and

that at the same time they have a cultural role, providing a steady stream of

new notions and information to the academia itself (brain sciences, logic,

philosophy, etc.). For example, Turing machines, by allowing for the

computability of mathematical notation, lead to deep results as the

undecidability of natural questions like the halting problem. On the other hand,

computer sciences provided a great number of ideas that were later

decoupled from its initial practical setting, such as: automata theory,

complexity theory, semantics of programs, type theory and linear logic,

process theory, database theory, AI, and so on.

Once computers were made, they proved to be useful for practical

purposes like the mechanization of theorem proving. Considering proofs as

programs, Simon and Newell created
40

 (and called their program) the Logic

Theory Machine, which was also programmed by J.C. Shaw, a scientist at

38

 Thomason, 1989.
39

 Floridi, 2008.
40

 MacKenzie, 2001: 66.

Logic and Computers. A Sketch of Their Symbiotic Relationships

Kairos. Journal of Philosophy & Science 9: 2014.
Center for the Philosophy of Sciences of Lisbon University 62

RAND Corporation and Carnegie Technical Institute. To Newell, Simon and

Shaw's surprise, Logic Theorist (the other name for Simon and Newell’s

program) produced a shorter, more elegant proof of theorem 2.85 of

Whitehead and Russell’s Principia Mathematica – indeed, the axioms and

theorems to be proven were taken from the Principia. Nevertheless, The

Journal of Symbolic Logic would not publish the description of a proof co-

authored by a computer program. Logic Theorist represented a cutting-edge

use of computers because of its reliance on heuristics, and because it

manipulated not numbers but information, represented in symbolic form.

Soon it was clear that, as MacKenzie remarked (2001: 72), the automation

of mathematical proof would require not just propositional logic, but also

predicate logic. In this sense, the initial contributions of logicians to automated

theorem proving focused on automating ‘decision procedures’, that is,

algorithms.

In summer of 1958, MacKenzie continues, Hao Wang was able to design

programs which had proven all the propositional logic theorems from the

Principia, using less than 30 seconds of CPU. This drove Wang to defend the

superiority of the algorithmic approach over the heuristic one. Wang was

skeptic about Simon & Newell’s heuristic approach, considering their research

as an amateur and unprofessional work. Hilary Putnam and Martin Davis

spent the summer of 1958 studying algorithms for propositional calculus and

developed the so-called Davis-Putnam procedure for checking the

satisfiability of formulae in propositional calculus.

In early July 1959, Robert S. Ledley and Lee B. Lusted wrote for Science a

paper entitled “Reasoning Foundations of Medical Diagnosis”
41

. At the

conclusions section they wrote: “The mathematical techniques that we have

discussed and the associated use of computers are intended to be an aid to

the physician. This method in no way implies that a computer can take over

the physician’s duties. Quite the reverse; it implies that the physician’s task

may become more complicated. The physician may have to learn more; in

addition to the knowledge he presently needs, he may also have to know the

methods and considerations under consideration in this Today you can

change ‘physician’ for ‘logician’ and the value of their words is still meaningful.

Computer science would not exist without logic, but once it was created, it

changed the ways of doing logic. This is a reflexive process. And there are

41

 Science, vol. 130, num. 3366, 9-21.

Jordi Vallverdú

Kairos. Revista de Filosofia & Ciência 9: 2014.
Centro de Filosofia das Ciências da Universidade de Lisboa

63

several forms of analyzing such symbiotic relationship; one of those ways is

to think about the influence of computers upon logic.

In 1962, John Alan Robinson found a new and, as MacKenzie (2001: 77)

wrote, “powerful rule of deductive inference which became paradigmatic in

automatic proving techniques: resolution”. Resolution is the deductive system

most often used in mechanizations of logic. And in the 1960’s, Dijkstra and

Hoare worked on the effects of structural sequential programs running on

single computers, which afterwards lead to dynamic logic (developed by

Salwick, Pratt, and others). Morevoer, as van Benthem (2007) remarks, “the

study or never-ending computation over infinite data streams, which cannot

be constructed, only observed”, opened a new fundamental theory: co-

algebra (Aczel and Mendler, 1989), a field that already changed mathematical

proof methods in analysis and set theory.

In the 1980’s the analysis of distributed systems and parallel computation

on many computers open the way for Milner’s process algebra, which became

an excellent general theory of communication processes in physics and

biology, among others.

Despite engineers’ preference for variable-free frameworks over first order

logic, such inclination is quite silent: computer sciences still have a pragmatic

influence over logics. For example, computer scientists offered logicians new

challenges and perspectives for modeling and constructing discrete systems

(Thomas, 2000). The interest in the specification of complex systems has

allowed the merge of formula based frameworks (like temporal logic, VDM, Z)

with diagram based formalisms (like SDL, UML, Statecharts).

2.1. Educational purposes

Among a broad list of computer programs for learning of (formal) logic,

several applications like Tarski’s World, Hyperproof, Logic Daemon, Jape

3.2., CPT I or MyC have been developed. The first steps towards a visual

approach to logic through computer tools was made by J. Barwise and J.

Etchemendy. The later is involved nowadays in The Openproof Project
42

 at

Stanford's Center for the Study of Language and Information. The center is

mainly concerned with the application of software to problems in logic, and

since the early 1980's they have been developing innovative and

42

 See: http://ggweb.stanford.edu/openproof/ accessed on March, 3
rd

 2014.

http://ggweb.stanford.edu/openproof/

Logic and Computers. A Sketch of Their Symbiotic Relationships

Kairos. Journal of Philosophy & Science 9: 2014.
Center for the Philosophy of Sciences of Lisbon University 64

commercially successful applications in logic education. Hyperproof, one of

the leading programs in this new era of teaching logic is

a heterogeneous logic program; the term heterogeneous arises from the

formal integration of the diagrammatic and sentential representations.

Barwise and Etchemendy designed Hyperproof to support reasoning in which

information from differing modalities (sentential and graphical) is combined or

transferred from one modality to another. Oberlander, Stenning and Cox
43

argued that the virtue of Hyperproof, lays not in visualization, but in its

multimodality. I disagree completely: the choice of seeing in completely 3D

visual environment allows for a different kind of cognition, better adapted to

human cognitive capacities
44

. Hyperproof has a better cognitive fitness and

introduces students into the new research paradigm of e-Science (Vallverdú,

2009). Visual thinking has been rehabilitated in epistemology of mathematics

and logic due to computer sciences (Mancosu, Jørgensen & Andur, 2005).

The educational logic platforms have reached even the cellular phones

commercial domain. The program Logic 101 is designed for constructing

derivations in introductory logic courses. It checks several parameters, such

as the syntax of symbolic sentences or whether each line can be derived from

previous lines, and also indicates derivable lines by colour, and displays

derivation rules for each derivable line. The completed derivations can even

be sent by e-mail. Logic 101 runs under both iPhone and iPod.There are also

two other logic apps there: Syllogism and Logic 100.

We can also find plenty of Java applets (Tilomino 2, xLogicCircuits, Truth

Table Constructor, DC Proof, and so on) freely hosted and distributed among

important education institutions all around the world. These technological

machines and artifacts make possible not only to study logics with

contemporary tools but also to think differently about logics. That the Internet

has changed deeply the ways by which we make science and establish

human relationships is something very clearly known. Computational logic

has made significant contributions to this, especially to the very-large-scale

integration (VLSI). VLSI is the process of creating integrated circuits by

combining thousands of transistor-based circuits into a single chip
45

. Testing

43

 J. Oberlander, K. Stenning and R. Cox (1996), The Multimodal Moral, online
document. See: ftp://ftp.cogsci.ed.ac.uk/pub/graphics/itallc96.ps, accessed on April
14

th
 2014.

44
 Vallverdú, 2010.

45
 See: http://en.wikipedia.org/wiki/Very-large-scale_integration, accessed on April

14th 2014.

http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Transistor
ftp://ftp.cogsci.ed.ac.uk/pub/graphics/itallc96.ps
http://en.wikipedia.org/wiki/Very-large-scale_integration

Jordi Vallverdú

Kairos. Revista de Filosofia & Ciência 9: 2014.
Centro de Filosofia das Ciências da Universidade de Lisboa

65

and verifying modern hardware and software are really complex tasks and

computational logic has contributed to make this process smoother. At the

same time, the Internet has modified the social ways of communicating and

debating computational logic. Websites, middleware, multimedia tools have

provided a new thinking space for the logic community.

2.2. From theory of computing to logics

One of the seminal influences between computer science and logic was

the Curry-Howard correspondence, which is the simple observation that two

at-the-time-seemingly-unrelated families of formalisms, the proof systems on

one side and the models of computation on the other were in fact structurally

the same kind of objects
46

. If it is true that the works of Curry
47

 and

Howard
48

.belonged to the field of logic, its consequences were analyzed by

experts belonging to the computer science domain. N. G. de Bruijn (used the

lambda notation for representing proofs of the theorem checker Automath,

and represented propositions as "categories" of their proofs), who was very

likely unaware of Howard's work stated the correspondence independently,

but also Stephen Kleene, Joachim Lambek, among others, made significant

contributions to this debate.

Another field in which an initial philosophical development has led to a

computer science innovation is that of game semantics. This is an approach

to formal semantics that grounds the concepts of truth or validity on game-

theoretic concepts. And as it is well known, Paul Lorenzen was the first to

introduce, in the late 1950’s, a game semantics for logic. By mid-1990’s,

game semantics had changed several related fields, such as theoretical

computer sciences, computational linguistics, AI or the way we understand

programming languages, especially through the efforts from van Benthem

who took a deep interest on the relation between logic and games. For van

Benthem
49

, game logics describe general games through powers of players

for forcing outcomes. Specifically, they encode an algebra of sequential game

operations such as choice, dual and composition. In this sense, logic games

46

 See: http://en.wikipedia.org/wiki/Curry-Howard_correspondence, accessed on April
14th 2014
47

 Curry, 1934, 1958.
48

 Howard, 1969.
49

 van Benthem, 2003.

http://en.wikipedia.org/wiki/Automath
http://en.wikipedia.org/wiki/Curry-Howard_correspondence

Logic and Computers. A Sketch of Their Symbiotic Relationships

Kairos. Journal of Philosophy & Science 9: 2014.
Center for the Philosophy of Sciences of Lisbon University 66

are special games for specific purposes such as proof or semantic evaluation

for first-order or modal languages. This author has made some crucial to

computer logic as well as some critical thinking about the future of logic,

arguing that there is something like a triangle of theory, reality, and new

design, and also an interaction between all these different perspectives.

Phenomena like reasoning or information flow suggest a natural Triangle of

perspectives: (somewhat normative) theory, empirical reality, but also virtual

reality, the construction of new systems and new forms of behavior by the

interplay of the former two. Accordingly, theoretical logic, empirical

psychology, and constructionist computer science form a natural Triangle of

disciplines, each approaching the topics on his agenda with a different thrust.

There is thus a fusion of fields more than a movement of influences from one

field to another
 50

.

The P = NP problem, a relationship between the complexity classes P

and NP, as Ivancevic & Ivancevic (2007: 124) described it, “is an unsolved

question in theoretical computer science”; it is considered “to be the most

important problem in the field”. Logic has played a crucial role in the

development of the theory of NP-completeness by formalizing the concept of

combinatorial explosion. At the same time, this intensive research led to a

new set of relativizing proofs, natural proofs and algebrizing proofs
51

.

2.3. Automation of sound reasoning

Beyond educational uses of computers into logical arena, we can find

fields in which the introduction of computers has changed the way of doing

and understanding logic. One of them is proof automation. Despite the fact

that most of computer programs related to proofs have been designed for

proof verification (Coq, HOL, etc.), some of them are automated reasoning

programs. OTTER, as Raynor (1999:217) wrote “is a fourth-generation

Argonne National Laboratory deduction system whose ancestors (dating from

the early 1960s) include the TP series, NIUTP, AURA, and ITP”. Otter must

have a heuristic or strategy in order to avoid the many millions of possible

deducible conclusions, but is doesn’t imply that it must be ‘person-oriented

50

 van Benthem, 2006.
51

 Garey & Johnson, 1979.

Jordi Vallverdú

Kairos. Revista de Filosofia & Ciência 9: 2014.
Centro de Filosofia das Ciências da Universidade de Lisboa

67

reasoning’
52

. This automatic canonicalization and simplification (by

demodulation or subsumption) can led us to a neat proof that would not be so

obvious to a human investigator
53

. Does it imply that this automation creates

black boxes or unintuitive proofs? No, as Robinson said (2000:15), the

Argonne group undertook “a large-scale pursuit of computing real

mathematical proofs”. Machines can do mathematics as well as humans. The

Argonne program found a proof of the Robbins conjecture. Indeed, as

Robinson continues, in approximately 20 hours of search on a SPARC 2

workstation, the program EQP (designed by McCune), found a proof in which

it could be demonstrated that every Robbins algebra was a Boolean algebra.

2.4. Verification systems

Computer sciences also need logic. The work on verification and validation

(V&V) of huge and complex systems requires logical tools in order to make

things easier and more effective. As soon as these tools appeared, its use on

proof verification allowed for a complete view on automatic reasoning and

automated V&VThis led to the actual IEEE Std 610.12-1990 V&V standard.

Proofs are now faster, more reliable and cheaper. But this came with a price

as one can see by a short list of the historical V&V mistakes: Ariane 5 rocket,

London Ambulance Dispatching System, Therac-25 or the Nike disaster.

Debugging was considered a necessary task in the beginnings of systematic

computer programming. Computers models and their results should be

reliable. This process could be done with a statistical approach, although, as

Dijkstra said in 1969: “program testing can be used to show the presence of

bugs, but never to show their absence!”
54

. On that same year, Tony Hoare

wrote the article “An Axiomatic Basis for Computer Programming”, which led

to the consolidation of the formal verification process. At that point, two thirds

of the cost of software projects were dedicated to locating and remove

programming bugs.

52

 Wos & Fitelson, 2005.
53

 Dana Scott, quoted by Wos & Fitelson, 2005, 717.
54

 McKenzie 2001, 45.

Logic and Computers. A Sketch of Their Symbiotic Relationships

Kairos. Journal of Philosophy & Science 9: 2014.
Center for the Philosophy of Sciences of Lisbon University 68

2.5. From logic and computer sciences to other fields

Finally, we have the social software. It is a new (since 1996) and, as

Pacuit (2005: 10) remarks, interdisciplinary research program that borrows

mathematical tools and techniques from game theory and computer science

in order to analyze and design social procedures. Rohit Jivanlal Parikh

(Pacuit’s PhD advisor), who was influential in the development of the field, is

leading these researches. The goals of research in this field are modelling

social situations, developing theories of correctness, and designing social

procedures55.

3. Other related issues: Patents

I would like to finish my analysis with a brief overview about one key

problem for any researcher dedicated to computer sciences: patents.

Klemens (2006) has made an extended study of the main problems of

patenting mathematics or programs (for him, equivalent domains). I am not

against (computer logic) patents, but we should consider its limits. Can we

patent numbers or mathematical operations? If not (and obviously we cannot),

why do we allow patented algorithms?

Let me consider though an example shown to me by Thomas Hales
56

, the

Ståalmarck’s method
57

. Ståalmarck’s method is a proof search algorithm for

finding proofs of propositional tautologies in a proof system called the

dilemma proof system. The search procedure is based on a notion of proof

depth corresponding to the degree of nestings of assumptions in proofs.

Ståalmarck’s algorithm has been successfully used in industrial applications

since 1989, for example in verification of railway interlockings and of aircraft

control systems. It has a Swedish Patent (467 076), where Ståalmarck’s

55

 For further readings on social software, see Parikh, 2002. See also:
http://en.wikipedia.org/wiki/Social_software_(social_procedure) , accessed on april
14

th
 2014.

56
 Private electronic correspondence January, 28

th
 2009.

57
 G. Ståalmarck, “A system for determining propositional logic theorems by applying

values and rules to triplets that are generated from a formula”. Swedish Patent No.
467 076 (approved 1992) U.S. Patent No 5 276 897 (approved 1994), European
Patent No 0403 454 (approved 1995).

Jordi Vallverdú

Kairos. Revista de Filosofia & Ciência 9: 2014.
Centro de Filosofia das Ciências da Universidade de Lisboa

69

algorithm is a patented technique for tautology-checking which has been used

successfully for industrial-scale problems, implemented as a HOL derived

rule.

 Conclusions

From several evidences we must conclude that the relation between logic

and computer sciences is mutual and symbiotic. Both fields have influenced

each other and as a result of this symbiotic process, their ideas and

performances were improved. Moreover, such mixture of techniques and

ideas has produced a spontaneous and continuous interchange between both

communities of researchers. In sum, this opened up new thinking spaces

through which boundaries between are blurred under a deep layer of common

interests, tools and ideas.

Acknowledgements

Financial support for this research was received from the Spanish Government’s

DGICYT research project: FFI2011-23238, “Innovation in scientific practice: cognitive

approaches and their philosophical consequences”. I thank to Amnon Eden, Thomas

Hales and Johan van Benthem for their support, suggestions, answers or

commentaries to my queries in some step of my long and slow research. I thank to

Peter Skuce for his patience and linguistic support. Finally, I really appreciate the

deep, hard and fine task of two patient anonymous reviewers, who suggested very

good ideas to improve the quality and coherence of this paper. After this process, I

need to clarify that all errors, mistakes, etc. in the article are exclusively my own. This

is the true way of making science.

Logic and Computers. A Sketch of Their Symbiotic Relationships

Kairos. Journal of Philosophy & Science 9: 2014.
Center for the Philosophy of Sciences of Lisbon University 70

References

Abramsky, S., Gabbay, D.M., and Maibaum T.S.E., 1993, Handbook of Logic in
Computer Science, Vol 2, London, Oxford University Press.

Aczel, P. and Mendler N.P., 1989, A Final Coalgebra Theorem. Category Theory and
Computer Science, 357-365.

Barendregt, H., 1997, The Impact of the Lambda Calculus in Logic and Computer
Science. The Bulletin of Symbolic Logic, 3 (2), 181-215.

Ben-Ari, M., 1993, Mathematical Logic for Computer Science, UK, Prentice Hall.

Bringsjord, S. and Ferrucci, D.A., 1998), Logic and Artificial Intelligence: Divorced, Still
Married, Separated ...?, Minds and Machines, 8 (2), 273-30.

Brooks, R., 1990, Elephants Don't Play Chess. Robotics and Autonomous Systems, 6

(1-2): 3-15.

Curry, H., 1934, Functionality in Combinatory Logic. In: Proceedings of the National
Academy of Sciences, 20, 584-590.

Curry, H. B. and Feys, R., 1958, Combinatory Logic Vol. I, Amsterdam, North-Holland.

Davis, M., 1988, Influences of mathematical logic on computer science. In: The
Universal Turing Machine: A Half-Century Survey, USA: OUP.

-- 2000, The Universal Computer: The Road from Leibniz to Turing, USA: W. W.

Norton and Company.

Dawson, J.W., 2006, Gödel and the Origins of Computer Science. In: CiE 2006, LNCS

3988, 133-136.

Ditmarsch van, H., van der Hoek & W, Kooi, 2008, Dynamic Epistemic Logic, London,

Springer.

Dosen, K. and Schroder-Heister. P., 1993, Substructural Logics, USA, Clarendon

Press.

Floridi, L., 2008, Philosophy of Computing and Information: 5 Questions, UK:

Automatic Press/VIP.

Flach, P.A., 2005, Modern Logic and Its Role in the Study of Knowledge. In: A
Companion to Philosophical Logic, London, Blackwell, 680-693.

Galton, A., 1992, Logic as a Formal Method, The Computer Journal, 35 (5), 431-440.

Garey, M.R. and Johnson, D.S., 1979, Computers and Intractability: A Guide to the
NP-Completeness, New York: W.H. Freeman.

Gentzen, G., 1934, Untersuchungen über das lοgische Schliessen. Mathematische
Zeitschrift, 39, 176-210, 405-31.

Halpern, J.Y. et al., 2001, On the Inusual Effectiveness of Logic in Computer Science.
The Bulletin of Synthetic Logic, 7 (2), 213-236.

Harrison, J., 2009, Handbook of Practical Logic and Automated Reasoning, UK, CUP.

http://www.informatik.uni-trier.de/~ley/db/conf/ctcs/ctcs89.html#AczelM89
http://www.informatik.uni-trier.de/~ley/db/conf/ctcs/ctcs89.html#AczelM89
http://www.ingentaconnect.com/content/klu/mind
http://en.wikipedia.org/wiki/Michael_Garey
http://en.wikipedia.org/wiki/David_S._Johnson

Jordi Vallverdú

Kairos. Revista de Filosofia & Ciência 9: 2014.
Centro de Filosofia das Ciências da Universidade de Lisboa

71

Hendricks, V. and Symons, J., 2009, Epistemic Logic. In: The Stanford Encyclopedia
of Philosophy (Spring 2009 Edition), Edward N. Zalta (ed.). Accessed on March 3

rd
,

2014: http://plato.stanford.edu/archives/spr2009/entries/logic-epistemic/

Howard, W., 1969, The formulae-as-types notion of construction. In: Seldin, J. et al.,
To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism,
Academic Press, 479-490.

Ivancevic, V.G. and Ivancevic, T.T, 2007, Computational Mind: A Complex Dynamics
Perspective, Berlin, Springer.

Klemens, B., 2006, MA+H You Can’t Use. Patents, Copyright and Software,
Washington, D.C., Brookings Institution Press.

Kowalski, R., 1982, Logic as a computer language. In: Logic programming, London,
Academic Press, 3-18.

Mackenzie, D. 2004, Mechanizing Proof: Computing, Risk, and Trust, Cambridge
(MA), The MIT Press.

Mancosu, P., Jørgensen, K.F. and Andur, S., 2005, Visualization, Explanation and
Reasoning Styles in Mathematics, USA, Springer.

McCarthy, J. and Hayes, P.J., 1969, Some Philosophical Problems from the
standpoint of the Artificial Intelligence. Accessed on March 4

th
, 2014:

http://www-formal.stanford.edu/jmc

Mishra, A., Yiannis Aloimonos, Y, & Fermuller, C. (2009), Active Segmentation for
Robotics, IROS 2009. Downloadable at:

http://www.umiacs.umd.edu/~mishraka/downloads/iros2009_activeSeg.pdf, Accessed
on April 12th 2014.

Pacuit, E., 2005, Topics in social software. Information in strategic situations. PhD
thesis, New York.

Parikh, R., 2002, Social Software. Synthese, 132, 187-211.

Poe, M.D. , Nasr, R., Potter, J. and Slinn, J., 1984, A KWIC (Key Word in Context).
Bibliography on Prolog and Logic Programming. Journal of Logic Programming, 1 (1),
81-142.

Post, E., 1936, Finite combinatory proceses. Formulation I. Journal of Symbolic Logic
1, 103-105.

Raynor, J., 1999, The International Dictionary of Artificial Intelligence, Chicago,
Glenlake Publishing Company, Ltd.

Robinson, J.A., 2000, Computational Logic: Memories of the Past and Challenges for
the Future. In: CL 2000, LNAI 1861, Berlin, Springer Verlag, 1-24.

Stewart, D, 1994, Herbert A. Simon: Thinking Machines, OMNI Magazine, Interview
June 1994. Accessed on March 4

th
, 2014:

http://www.astralgia.com/webportfolio/omnimoment/archives/interviews/simon.html

Thomas, W., 2000, Logic for Computer Science: The Engineering Challenge. Lecture
given at the Dagstuhl Anniversary Conference, Saarbrücken.

http://plato.stanford.edu/archives/spr2009/entries/logic-epistemic/
http://www-formal.stanford.edu/jmc
http://www.umiacs.umd.edu/~mishraka/downloads/iros2009_activeSeg.pdf
http://www.sigmod.org/dblp/db/indices/a-tree/p/Poe:Michael_D=.html
http://www.sigmod.org/dblp/db/indices/a-tree/n/Nasr:Roger.html
http://www.sigmod.org/dblp/db/indices/a-tree/p/Potter:Janett.html
http://www.sigmod.org/dblp/db/indices/a-tree/s/Slinn:Janet.html
http://www.astralgia.com/webportfolio/omnimoment/archives/interviews/simon.html

Logic and Computers. A Sketch of Their Symbiotic Relationships

Kairos. Journal of Philosophy & Science 9: 2014.
Center for the Philosophy of Sciences of Lisbon University 72

Thomason, R., 1988, Philosophical logic and artificial intelligence. Journal of
Philosophical Logic, 17 (4), 321-327.

-- 1989, Philosophical Logic and Artificial Intelligence, Dordrecht, Kluwer Academic
Publishers.

Turner, R., 1985, Logics for AI, Chichester, Ellis Horwood.

Vallverdú, J., 2009, Computational Epistemology and e-Science. A New Way of
Thinking. Minds and Machines, 19 (4), 557-567.

-- 2010, Seeing for Knowing. The Thomas Effect and Computational Science. In:
Thinking Machines and the Philosophy of Computer Science: Concepts and Principles,
USA, IGI Global Group, 140-160.

van Benthem, J. 2000, Reasoning in reverse. In: Abduction and Induction: Essays on
their Relation and Integration, Dordrecht, Kluwer Academic, ix-xi.

-- 2003, Logic Games are Complete for Game Logics. Studia Logica, 75, 183-203.
-- 2006, Where is Logic Going, and Should It?.Topoi, 25 (1-2),117-122.

van Benthem, J., et al, 2006, The Age of Alternative Logics. Assessing Philosophy of
Logic and Mathematics Today, Series: Logic, Epistemology, and the Unity of Science ,

Dordrecht, Springer.

van Benthem, J., 2007, An Interview on the Philosophy of Information, accessed on
March 4th 2014 http: // www.illc.uva.nl/ Research / Publications / Reports/PP-2008-
01.text.pdf

van Benthem, J. and Martínez, M., 2007, The stories of logic and information. In:
Philosophy of information, Amsterdam, North Holland.

van Roy, P and Seif, H., 2004, Concepts, Techniques and Models of Computer
Programming, Cambridge (MA), MIT Press.

Wadler, P., 2000, Proofs are Programs: 19th Century Logic and 21st Century
Computing, Dr. Dobb’s Journal (published as “Old ideas form the basis of
advancements in functional programming”), downloadable from:
http://homepages.inf.ed.ac.uk/wadler/papers/frege/frege.pdf, accessed on April 12th
2014. See also: http://homepages.inf.ed.ac.uk/wadler/topics/history.html, ibid.

Wos L. and Fitelson, B., 2005, The Automation of Sound Reasoning and Successful
Proof Finding. In: Companion to Philosophical Logic, USA, Blackwell, 709-723.

http://www.springerlink.com/content/u12618x58m327v58/?p=3846f8602cf34d7eb990331d22cddce9&pi=2
http://www.springerlink.com/content/v0427jmq2q7705m7/?p=e2a4623ed0e44519a64a220367382a61&pi=20
http://www.springer.com/series/6936
http://homepages.inf.ed.ac.uk/wadler/papers/frege/frege.pdf
http://homepages.inf.ed.ac.uk/wadler/topics/history.html

